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Abstract
Prediction markets provide a unique and compelling way to sell and aggregate information, yet
a good understanding of optimal strategies for agents participating in such markets remains
elusive. To model this complex setting, prior work proposes a three stages game called the Alice
Bob Alice (A-B-A) game—Alice participates in the market first, then Bob joins, and then Alice
has a chance to participate again. While prior work has made progress in classifying the optimal
strategy for certain interesting edge cases, it remained an open question to calculate Alice’s best
strategy in the A-B-A game for a general information structure.

In this paper, we analyze the A-B-A game for a general information structure and (1) show
a “revelation-principle” style result: it is enough for Alice to use her private signal space as her
announced signal space, that is, Alice cannot gain more by revealing her information more “finely”;
(2) provide a FPTAS to compute the optimal information revelation strategy with additive error
when Alice’s information is a signal from a constant-sized set; (3) show that sometimes it is
better for Alice to reveal partial information in the first stage even if Alice’s information is a
single binary bit.
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1 Introduction

Prediction markets aggregate information from diverse resources in a compelling manner.
However, despite their powerful function in real-life deployments, large holes remain in the
theory of prediction markets. For example, a basic information revelation question—how
should an agent reveal her information in a prediction market to maximize her expected
payoff—is still not fully answered. To model the complex setting of prediction market and deal
with the information revelation question, Chen et al. [4, 3], Chen and Waggoner [5] propose
and study a three stages game called the Alice Bob Alice (A-B-A) game—Alice participates
in the market first, then Bob joins, and then Alice has an opportunity to participate again.
They also define two special information structures—“substitutes” and “compliments”—and
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show that when traders’ information are substitutes (compliments), Alice should reveal her
information as soon (late) as possible. However, apart from those extreme cases, it remained
an open question to calculate Alice’s optimal information revelation strategy in the A-B-A
game for a general information structure which is the main focus of the current paper.

Computing optimal information revelation strategy is also a key problem in the Bayesian
persuasion literature ([11, 7, 2]). Bayesian persuasion, proposed by Kamenica and Gentzkow
[11], models a situation where a informed sender (partially) reveals her information to
persuade an uninformed receiver to adopt an action. In the Bayesian persuasion model, the
informed sender first commits to an information revelation strategy and then announces
a signal based upon the committed strategy. Borrowing this idea of commitment from
Bayesian persuasion, we consider the A-B-A game where Alice makes a commitment to her
information revelation strategy before the game. We call the strategy in the A-B-A game with
commitment a Bayesian information revelation strategy. Like in the Bayesian persuasion
case, this power of commitment makes sense if we expect the game to be repeated [11].
People cannot lie to others in the market and make money forever. After many rounds of
market activities, people will identify rules to effectively translate the leaked information.

Our Results

The current paper analyzes A-B-A for the general information structures and

1) proves a general revelation principle style theorem (Section 5.2.2) for the A-B-A game by
showing it is enough for Alice to use her private signal space as her announced signal
space, that is, Alice cannot gain more by revealing her information more “finely”.

2) leverages the intuition of the aforementioned result to give a fully polynomial time approx-
imation scheme (FPTAS) to compute the optimal information revelation strategy with
additive error when Alice’s information is a signal from a constant-sized set (Section 5.2.2);

3) shows that sometimes it is better for Alice to reveal partial information in the first stage,
even when Alice’s information is a binary bit (Section 4, Appendix B).

Before our result, it was not known how to compute (regardless of time complexity) an
optimal strategy for Alice even when her signal was binary, or that such a strategy existed
for a general information structure.

1.1 Related Work
Bayesian Persuasion (BP) Model

Conceptually, the Bayesian Persuasion model is different than the A-B-A with commitment.
In the A-B-A game, both Alice and Bob sell information to the market and Bob is informed
as well and is actually a competitor of Alice. In contrast, in BP, the sender sells the
information to the uninformed receiver and has different kind of utility function with the
receiver. Technically, in BP, the goal function is a linear function of the revelation strategy
while the A-B-A is much more complicated.

Despite those differences, Kamenica and Gentzkow [11] also show a “revelation principle”
style statement which is similar with the statement in the current paper—it is enough for
the sender to draw her announced signal from the receiver’s action space. That is, the sender
cannot gain more by making her announced signal space more complicated. More formally, if
the receiver’s action space is Ar and the sender’s private information space is Xs, the sender
can obtain the optimal utility by just optimizing over the space of all “simple” strategies



Y.Kong and G. Schoenebeck 14:3

M : Xs×Ar 7→ [0, 1] such that M(x, a) represents the probability the sender who has private
information x and announces action a regardless of other “complicated” strategies. However,
the proof of our A-B-A revelation principle is much more complicated than that in the BP
case. In the A-B-A game, Bob’s possible actions (best responses) are infinite, while in the
BP case they are finite. Moreover, Alice’s utility depends non-linearly on Bob’s action which
means even though Bob’s action space has a good structure, any simple proof is unlikely to
work. To prove the A-B-A revelation principle, we use a totally different method involving
linear programming.

Information Revelation Problem

As mentioned in the introduction, Chen et al. [4, 3], Chen and Waggoner [5] propose and
study the A-B-A game. When Alice’s information and Bob’s information are independent
with each other, their information is defined as “compliments”. On the other hand, when
Alice’s information and Bob’s information are conditionally independent with each other
(conditioning on the event they want to forecast), their information is defined as “substitutes”.
Chen et al. [4, 3], Chen and Waggoner [5] show that Alice should reveal her information as
late (early) as possible when their information is “compliments” (“substitutes”). In those
extreme cases, Alice cannot obtain better utility by partially revealing her information which
is not true in the general case which is studied in the current paper.

Azar et al. [1] consider a model where the market price is a reverse Gaussian random
walk and the expert who has a less noisy signal should decide a time to announce her signal.
However, in their model, the expert only has a chance to participate in the market once while
in the A-B-A game, Alice has multiple chances to participate the market and can partially
reveal her information at first to obtain better utility. Moreover, the information structure
considered in Azar et al. [1] is limited by their assumptions while the current paper considers
the general information structure.

2 Preliminaries

2.1 Prediction Markets
In this section, we introduce the market scoring rule (MSR) model [9, 10]. We first introduce
the main technical tools in the MSR model—proper scoring rules [13], which are used to
measure the score (accuracy) of the forecast.

Proper Scoring Rules [8, 13]

A scoring rule which we denote PS : Σ×∆Σ 7→ R takes in a signal σ ∈ Σ and a distribution
over signals p ∈ ∆Σ and outputs a real number. A scoring rule is proper if, whenever the
first input is drawn from a distribution p, the expectation of PS is maximized if the second
input is p. That is, p ∈ arg maxp′ Eσ∼p[PS(σ,p′)]. A scoring rule is called strictly proper if
p uniquely maximizes Eσ∼p[PS(σ,p′)]. We will assume throughout that the scoring rules
we use are strictly proper. By slightly abusing notation, we can extend a scoring rule to be
PS : ∆Σ ×∆Σ 7→ R by simply taking PS(p,p′) = Eσ←p(σ,p′). Any proper scoring rule is
linear in the first term.

Fix an outcome space Σ for a signal σ. Let q ∈ ∆Σ be a reported distribution.

I Example 1. (Logarithmic Scoring Rule)

ITCS 2018
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Figure 1 An example of nice convex function G : [0, 1] 7→ R, G(0) = G(1) = 0.

A logarithmic scoring rule maps a signal σ and reported distribution q to a payoff as
follows:

LSR(σ,q) = log(q(σ)).

Let the signal σ be drawn from some random process with distribution p ∈ ∆Σ.
Then the expected payoff of the logarithmic scoring rule is

Eσ←p[LSR(σ,q)] = LSR(p,q) =
∑
σ

p(σ) log q(σ)

This value will be maximized if and only if q = p

I Example 2. (Quadratic Scoring Rule / Brier scoring rule)
A quadratic scoring rule which maps a signal σ and reported distribution q to a payoff

as follows:
QSR(σ,q) = 2q(σ)−

∑
σ′

q(σ′)2 − 1.

Let the signal σ be drawn from some random process with distribution p ∈ ∆Σ.
Then the expected payoff of the logarithmic scoring rule is

Eσ←p[QSR(σ,q)] = QSR(p,q) = 2〈p,q〉 − 〈q,q〉 − 1

This value will be maximized if and only if q = p.

In general, proper scoring rules can be constructed from convex functions. Given a
bounded convex function H : ∆Σ 7→ R, we define PSH : Σ×∆Σ 7→ R such that

PSH(σ,p) = H(p)− 〈H ′(p),p〉+H ′σ(p)

where 〈, 〉 denotes the inner product of two vectors and H ′σ denotes the partial derivative of
H with respect to the σth entry.
I Fact 3. [8] When H : ∆Σ 7→ R is (strictly) convex, PSH : Σ×∆Σ 7→ R is (strictly) proper
and ∀p, PSH(p,p) = H(p).

To control the convergence rate analysis in the future, we consider a special class of
proper scoring rules.

I Definition 4 (Nice convex functions). We say a convex real function G : [0, 1] 7→ R is nice
if (i) G(0) = G(1) = 0 and (ii) there exists a constant λ > 0 such that when ε is sufficiently
small, max{|G(ε)|, |G(1− ε)|} ≤ ελ. We denote the set of all such nice functions as G.
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I Definition 5 (PSG, HG, PSG). Given a bounded strictly convex real function G : [0, 1] 7→
R, (Figure 1), we define HG : ∆Σ 7→ R as a function such that HG(p) :=

∑
σ G(p(σ)) for any

p ∈ ∆Σ. We define PSG(σ,p) := PSHG(σ,p). We call such a proper scoring rule good if G
is a nice convex function, and define the set of all nice proper scoring scoring rules as PSG.

Now we explain the restrictions of nice convex functions G. If we pick G(x) = x log x
which is a nice convex function (Example 1), the proper scoring rule is the common used log
scoring rule and |PSG(p,p)| = −HG(p) = −

∑
σ p(σ) log p(σ) which is the Shannon entropy

of distribution p [6].
Note that entropy can be interpreted as the uncertainty of distribution p. For example,

when p = (0, 1, 0, 0, 0), there is no uncertainty, the entropy is 0. When we use other G(x),
we still want |PSG(p,p)| = −HG(p) to be interpreted as the uncertainty of distribution p.
Therefore, we put the restriction G(0) = G(1) = 0. Then if when there is no uncertainty, p
must be an extreme point of ∆Σ, HG(p) = G(1) +G(0) + ...+G(0) = 0.

The second restriction is needed when we analyze the convergence rate in the future. We
hope G(x) never changes too fast. Note that it’s a weaker condition than lipschiz condition
since G(x) = x log x does not satisfy the lipschiz condition but satisfy our restriction since
|G(ε)| = ε log ε ≤ ελ,∀0 < λ < 1 and |G(1− ε)| = (1− ε) log(1− ε) ≤ log(1− ε) ≤ ε.

Note this special class is still rich and several commonly used proper scoring rules,
including the aforemetioned examples, belong to this class.

I Remark. Setting G(x) = x log x, the nice proper scoring rule PSG is the logarithmic
scoring rule. Setting G(x) = (x− 1

2 )2 − 1
4 , the nice proper scoring rule PSG is the quadratic

scoring rule.

I Remark. Note that affine transformations preserve convexity. Without loss of generality,
we assume for any PSG ∈ PSG, |PSG(p,p)| = |HG(p)| ≤ 1,∀p. This also means our results
apply to the Brier Scoring rule, which is a shift of the quadradic scoring rule.

Market Scoring Rule Model

The theoretical prediction market model used in the current paper is the market scoring rule
(MSR) model which is proposed by Hanson [9, 10]. In this model, market price corresponds
to people’s beliefs for the event. When a trader changes the market belief from p1 to p2, the
automated market maker market scoring rule (MSR) will pay the trader the “accuracy” of
forecast p2 minus the “accuracy” of forecast p1. The “accuracy” of the forecast is measured
by the proper scoring rules [13]. We provide a formal definition in the below paragraph.

I Definition 6 (Prediction market PM(PS,XE) [9, 10]). Let XE be a random variable that
people want to forecast. The market maker sets up an initial belief for XE . Every agent can
modify the market belief. When an agent changes the market belief from p1 to p2, her payment
will be the score of belief p2 minus the score of belief p1, that is, PS(XE , p2)− PS(XE , p1)
after XE is revealed.

2.2 Notation
For two random variables X,Y which are drawn from space [n]× [m], we define

Pr[Y|X = i] := (Pr[Y = 1|X = i],Pr[Y = 2|X = i], · · · ,Pr[Y = m|X = i]).

For any function f : [n] 7→ R, EXf(X) =
∑
i Pr[X = i]f(i).

ITCS 2018
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For a matrix M , we use Mi,· to denote the ith row, M·,j to denote the jth column, and
Mi,j = M(i, j) to denote the entry at the ith row and the jth column. In particular, Mi,· is
a row vector and M·,j is a column vector.

A matrix M is a transition matrix if every entry of M is non-negative and the sum of all
entries in each row is 1. Throughout this paper, we denote byMn×m the set of all transition
matrices that have dimension n×m, and denoteMn×∗ =

⋃
m≥nMn×m.

Given a random variableX that has n possible outcomes, an transition matrixM ∈Mn×m
defines a transition probability that transforms X to M(X) such that M(X) is a new
random variable that has m possible outcomes where Pr[M(X) = j|X = i] = Mi,j .

If the distribution of X is represented by an 1× n row vector p, then the distribution
over M(X) is pM and Pr[M(x) = j] = p ·M·,j .

3 Alice Bob Alice Game with Commitment

We analyse the Alice Bob Alice game with commitment in this section, that is, Alice commits
a signaling scheme before the game. The random event of interest is XE . XE is drawn
from a signal space ΣE , |ΣE | = nE . We use a proper scoring rule based prediction market
PM(PS,XE) to pay Alice and Bob. Suppose Alice’s private information is XA and Bob’s
private information is XB . XA is drawn from a signal space ΣA, |ΣA| = nA and XB is drawn
from a signal space ΣB , |ΣB | = nB .

We assume both Alice and Bob are rational.

I Definition 7 (signaling scheme). Given that a signal space Σ, |Σ| = m, we define Alice’s
signaling scheme M as an nA ×m transition matrix such that MxA,σ = M(xA, σ) is the
probability Alice announces signal σ ∈ Σ given private information XA = x.

A signaling schemeM defines a transition probability. We define Xσ as a random variable
such that Xσ := M(XA), that is,

XA
M−→ Xσ.

Alice Bob Alice Game with Commitment (XA, XB, XE , PS)

Stage 0 Alice commits her signaling scheme M .
Stage 1 Alice receives a signal σA ∈ ΣA, implements her signaling scheme, and announces

the result σ ∈ Σ. Alice changes the market belief for event XE from the original prior
forecast p0 = Pr[XE] to

p1 = Pr[XE|Xσ = σ,M ].

Stage 2 Bob changes the market belief to p2 (which is a function of M,p1, XB and Bob’s
strategy).

Stage 3 Alice changes the market belief to p3 (which is a function of M,p1,p2, XA and
Alice’s strategy).

Payment Both Alice and Bob are paid according to proper scoring rule based prediction
market PM(PS,XE). Suppose the initial market belief is p0 = Pr[XE |Xσ]. Alice and
Bob’s payments are

µA = (PS(XE ,p1)− PS(XE ,p0)) + (PS(XE ,p3)− PS(XE ,p2))
µB =PS(XE ,p2)− PS(XE ,p1)

correspondingly.
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Fix the joint distribution over random variables XA, XB , XE . Consider an A-B-A game
with commitment (XA, XB , XE , PS ∈ PSG). We assume Alice and Bob will optimally
respond in stage 2 and stage 3. Actually we will see since the market uses strictly proper
scoring rule, both Alice and Bob’s optimal responses in stage 2 and stage 3 are unique
(Claim 11, 12). In this case, both Alice and Bob’s expected payments can be seen as a
function of Alice’s signaling scheme M . We define Alice’s expected payment as µ∗A(M); and
Bob’s expected payment as µ∗B(M).

We define µ∗(M) := µ∗A(M) + µ∗B(M). We also define µ∗ := supM µ∗(M), µ†B :=
infM µ∗B(M) (note that it’s an infimum here), and µ∗A := µ∗ − µ†B . Note that µ∗A(M) ≤ µ∗A.

I Definition 8 (Optimizing Signaling Scheme Problem). Consider an A-B-A game with
commitment (XA, XB , XE , PS ∈ PSG). An optimizing signaling scheme problem is the
problem of constructing Alice’s optimal signaling scheme M∗ such that µ∗A(M∗) = µ∗A if
exists or a series of signaling schemes {M∗(ε)}ε such that

µ∗A(M∗(ε)) ε→0−−−→ µ∗A.

4 Summary of the Main Results

I Theorem 9 (Optimizing Signaling Scheme). Given the joint distribution over random vari-
ables XA, XB , XE, consider an A-B-A game with commitment (XA, XB , XE , PS

G ∈ PSG).
When Alice’s private signal is from a constant-sized set, that is, nA is a constant integer T , for
all sufficiently small 0 < ε < 1, there exists an O

(
(LP ( 1

ε + 1)T ) + nBnE( 1
ε + 1)T ) + n2

BnE
)

time algorithm that constructs the signaling scheme M∗(ε) ∈MnA×nA such that

µ∗A(M∗(ε)) ≥ µ∗A −Θ(|ε|+ nE |G(ε)|+ nE |G(1− ε)|)

where LP (k) is the time complexity of linear programming with k variables.
Moreover, when Alice commits to signaling scheme M∗(ε), the optimal responses of Bob

and Alice in stage 2 and stage 3 are

p∗2 = Pr[XE|Xσ, XB ] p∗3 = Pr[XE|XA, XB ]

respectively where XA
M∗(ε)−−−−→ Xσ.

I Corollary 10. Given the joint distribution over random variables XA, XB , XE, consider
an A-B-A game with commitment (XA, XB , XE , PS

G ∈ PSG). When Alice’s private signal
is from a constant-sized set, that is, nA is a constant integer T , there is a FPTAS for Alice
to optimize her signaling scheme with additive error.

We defer the full proof to the end of Section 5.

Proof Sketch of Theorem 9

We will first give a game theoretic analysis for the optimal strategy for Alice and Bob in
stage 2 and stage 3. The definition of the proper scoring rules implies that in stage 2 and
stage 3, Alice and Bob should honestly report their best forecast for event XE at that stage.
The best forecast should be the posterior probability of XE conditioning on all possible
information they have at that time.
Step 1 Minimizing Bob’s optimal expected payment Fixing the joint distribution over

Alice and Bob’s private information and the event, Bob’s optimal expected payment
µ∗B(M) is a function of Alice’s signal scheme M ∈Mn×∗. To calculate the signal scheme
M† for Alice to minimize Bob’s optimal expected payment, we will prove that

ITCS 2018
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Figure 2 The optimal signal scheme when XA is a binary random variable given different
joint distributions overXA, XB , XE (see Appendix for the numerical values of the three joint

distributions). Left: M∗ =
[
x 1− x
x 1− x

]
, ∀x Alice’s optimal strategy is revealing no information.

Middle: M∗ =
[

0.18 0.82
1 0

]
or
[

0.82 0.18
0 1

]
Alice’s optimal strategy is revealing partial information.

Right: M∗ =
[

1 0
0 1

]
or
[

0 1
1 0

]
Alice’s optimal strategy is revealing full information.

Revelation principle it is sufficient to optimize overM ∈Mn×n, we prove this by showing
a “decomposibility” property of Bob’s optimal expected payment µ∗B(M);

Continousness when M ≈M ′, µ∗B(M) ≈ µ∗B(M ′).
Then we use a linear programming based algorithm to approximate the signal scheme
M† for Alice to minimize Bob’s optimal expected payment.

Step 2 Maximizing the total expected payment We will perturb M† to M∗ ≈ M† such
that adopting the signaling scheme M∗ guarantees that the sum of Alice and Bob’s
optimal expected payment obtains the upper-bound.

After finishing the above two steps, we obtainM∗ which gives Alice the expected payment
which is close to optima since M∗ both minimizes Bob’s optimal expected payment and
maximizes the sum of Alice and Bob’s expected payment.

µ∗A(M∗) =µ∗(M∗)− µ∗B(M∗)
=µ∗ − µ∗B(M∗)
≈µ∗ − µ∗B(M†) (M∗ ≈M†, continousness of µ∗B(M))

=µ∗ − µ†B
=µ∗A

Experimental Results

We show that sometimes it is better for Alice to reveal partial information in the first stage
even if Alice’s information is a single binary bit by providing the optimal signal scheme of
Alice in the A-B-A game in three scenarios (Figure 2). We give the numerical values of the
three scenarios in appendix.
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5 Optimizing Signaling Scheme

5.1 Game Theoretic Analysis of A-B-A
This section shows that in stage 2 and stage 3, Alice and Bob should honestly report their
best forecast for event XE at that stage. The best forecast is the posterior probability of
XE conditioning on all possible information they have at that time. Moreover, the sum of
the expected payments of Alice and Bob obtains its upper-bound if Alice learns the exact
value of XB from Bob’s behavior and plays the strategy in stage 3 that fully aggregates the
information.

I Claim 11. Given the joint distribution over random variables XA, XB , XE , consider an
A-B-A game with commitment (XA, XB , XE , PS

G ∈ PSG). Given that Alice commits
signaling scheme M , XA

M−→ Xσ, Bob’s optimal action is changing the market belief to
p∗2 = Pr[XE|Xσ, XB ] in stage 2 and his optimal expected payment is

µ∗B(M) = EXσ,XB [HG(Pr[XE|Xσ, XB ])−HG(Pr[XE|Xσ])].

Recall that −HG(p) can be interpreted as the uncertainty / “entropy” of distribution p.
The uncertainty of event XE decreases with more information. Therefore, Bob’s expected
payment can be interpreted as the contribution of Bob’s private information XB to decrease
the uncertainty if the event XE given the existence of the partial information Xσ of Alice.

Proof of Claim 11. Bob only has one chance to participate. Thus, he will always report his
truthful forecast which is conditioning on his own information and the information Alice
conveys to him. Therefore, Pr[XE|Xσ, XB ] is Bob’s optimal action and

EXE ,Xσ,XBPSG(XE ,p2)− PSG(XE ,p1)
=EXσ,XBEXE |Xσ,XB [PSG(XE ,p2)− PSG(XE ,Pr[XE|Xσ])] (p1 = Pr[XE|Xσ])
≤EXE ,Xσ,XB [PSG(XE ,Pr[XE|Xσ, XB ])− PSG(XE ,Pr[XE|Xσ])]

(definition of proper scoring rule)
=EXE ,Xσ,XBPSG(XE ,Pr[XE|Xσ, XB ])
− EXE ,XσPSG(XE ,Pr[XE|Xσ])

(The second part is independent of Bob’s information XB)
=EXσ,XB [HG(Pr[XE|Xσ, XB ])−HG(Pr[XE|Xσ])] (Fact 3)

J

I Claim 12. Given the joint distribution over random variables XA, XB , XE , consider an
A-B-A game with commitment (XA, XB , XE , PS

G ∈ PSG). When Alice learns the exact
value of XB from Bob’s behavior, Alice’s optimal action is changing the market belief to
p∗3 = Pr[XE|XA, XB ] in stage 3 and the optimal sum of expected payment is

µ∗ = EXE ,XA,XB [HG(Pr[XE|XA, XB ])−HG(Pr[XE])].

The optimal total expected payment can be interpreted as the contribution of Alice and
Bob’s private information to decrease the uncertainty of the event XE and can be obtained
when in stage 3, Alice learns all information.

ITCS 2018
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Proof of Claim 12. According to the definition of the proper scoring rules, the optimal p3
in stage 3 is the forecast that conditions on all information XA, XB . When Alice learns the
exact value of XB from Bob’s behavior, she can play this optimal strategy in stage 3 which
makes the sum of expected payments of Alice and Bob optimal.

EXE ,XA,XBPSG(XE ,p3)− PSG(XE ,p0)
=EXA,XBEXE |XA,XBPS

G(XE ,p3)− EXEPSG(XE ,p0)
≤EXE ,XA,XB [PSG(XE ,Pr[XE|XA, XB ])− PSG(XE ,p0)]

(definition of proper scoring rule)
=EXE ,XA,XBPSG(XE ,Pr[XE|XA, XB ])− EXEPSG(XE , P r[XE]) (p0 = Pr[XE])
=EXA,XB [HG(Pr[XE|XA, XB ])−HG(Pr[XE])] (Fact 3)

J

5.2 Minimizing Bob’s Expected Payment
5.2.1 Decomposability and Continuousness of Bob’s Expected Payment
This section will show two important properties required of µ∗B(M) for the optimization step.

I Definition 13 (Decomposability). Recall thatMn×∗ is the set of all transition matrices
which have n rows. A function F : Mn×∗ 7→ R is decomposable if there exists a function
f : Rn 7→ R satisfying f(λv) = λf(v) for any λ ∈ R+,v ∈ Rn such that for any

M = [M·,1 M·,2 · · · M·,m] ∈M,

we have

F (M) =
m∑
j=1

f(M·,j).

Given the joint distribution over random variables XA, XB , XE , consider an A-B-A game
with commitment (XA, XB , XE , PS

G ∈ PSR). Recall that we define Bob’s optimal expected
payment as µ∗B(M) and random variables XA, XB, and XE have nA, nB, and nE possible
outcomes respectively. The signal space of Alice is Σ, |Σ| = m.

I Lemma 14 (Decomposability). µ∗B(M) is a decomposable function of M ∈Mn×∗.

I Lemma 15 (Continousness). For every M ∈MnA×m, if maxi,j |Mi,j −M ′i,j | ≤ ε, then

|µ∗B(M ′)− µ∗B(M))| ≤ Θ(nAm(nE |G(ε)|+ nE |G(1− ε)|+ ε)).

We defer the full proofs to the appendix.

Proof sketch

Recall that
µ∗B(M) = EXσ,XB [HG(Pr[XE|Xσ, XB ])−HG(Pr[XE|Xσ])].

For the decomposability,

µ∗B(M) =EXσ,XB [HG(Pr[XE|Xσ, XB ])−HG(Pr[XE|Xσ])] (Claim 11)

=
∑
σ

Pr[Xσ = σ]EXB |Xσ=σ[HG(Pr[XE|Xσ = σ,XB ])−HG(Pr[XE|Xσ = σ])]
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We define φj(M) := Pr[Xσ = j], ψj(M) := EXB |Xσ=σHG(Pr[XE|Xσ = σ,XB]) −
HG(Pr[XE|Xσ = σ]).

We will show
(i) φj(M) is a linear function of M·,j
(ii) ψj(M) only depends on the “shape” of M·,j— M·,j

S(M·,j)
1—where S(M·,j) is the sum of

vector M·,j
Combining both (i) and (ii), we can see φj(M)ψj(M) = Φ(M·,j)Ψ(M·,j) only depends on

M·,j and moreover, for any λ ∈ R+,

Φ(λM·,j)Ψ( λM·,j
S(λM·,j)

) = λΦ(M·,j)Ψ( M·,j
S(M·,j)

)

that is, it preserves the scalar multiplication of M·,j . Therefore, µ∗B(M) =
∑
j φj(M)ψj(M)

is a decomposable function of M . We defer the proofs of (i) and (ii) to the appendix.
The proof for continousness is a little bit tricky. When we perturb M a little bit, it’s

possible that Pr[XE|M(XA)]) changes a lot. Consider an extreme case where the prior of
XA is a uniform distribution and we pick transition probability M such that Pr[M(XA) =
j] = 0.000001. We add ε = 0.01 to Mij to obtain M ′. In this case, M ′ij >> M ′kj , k 6= i.
Thus, conditioning on M ′(XA) = j the probability XA = i is close to 1. Therefore,
Pr[XE|M ′(XA) = j] ≈ Pr[XE|XA = i]. However, since we can still freely determine
the “shape” of M·,j , we can make Pr[XE|M(XA) = j] far away from Pr[XE|XA = i] ≈
Pr[XE|M ′(XA) = j] even if M ≈ M ′. Fortunately, this bad case only happens when
PrM [Xσ = j] is very small. We will show that the product Pr[Xσ = j]HG(Pr[XE|M(XA) =
j]) is robust with respect to M .

The key property needed in the proof of contiousness is the convexity of function G(x) :
[0, 1] 7→ R. For a convex function G(x), its derivative is a monotone function which implies
that the absolute value of the derivative is maximized at the endpoints. That is why the
values of |G(ε)| and |G(1− ε)| dominate the convergence rate.

5.2.2 Optimizing a Decomposable and Continuous Function
I Definition 16. F :Mn×∗ 7→ R is C(ε, n)-continuous if for all sufficiently small 0 < ε < 1,
for every M,M ′ ∈Mn×n, if maxi,j |Mi,j −M ′i,j | ≤ ε, then

|F (M ′)− F (M))| ≤ C(ε, n).

I Theorem 17. If F :Mn×∗ 7→ R is decomposable, then

min
M∈Mn×∗

F (M) = min
M∈Mn×n

F (M) and max
M∈Mn×∗

F (M) = max
M∈Mn×n

F (M).

Moreover, when F is C(ε, n)-continuous, for all sufficiently small 0 < ε < 1, there exists
an O

(
LP ( 1

ε + 1)n)
)
time algorithm that outputs M−∗(ε),M+∗(ε) ∈Mn×n such that

F (M−∗(ε)) ≤ min
M∈Mn×∗

F (M) + C(ε, n) and F (M+∗(ε)) ≥ max
M∈Mn×∗

F (M)− C(ε, n)

where LP (k) is the time complexity of linear programming with k variables.

Proof.
I Claim 18. For any M ∈Mn×∗, there exists M−,M+ ∈Mn×n such that

F (M−) ≤ F (M) ≤ F (M+).

1 if M·,j = (0, 0, ..., 0)>, we define M·,j
S(M·,j) as (0, 0, ..., 0)>.
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Part 1: Revelation Principle

The above claim directly implies the first result. It remains to show the claim. Let’s construct
the below linear program. Fix any M ∈Mn×m,

min
x

∑
j

xjf(M·,j) (1)

s.t.
∑
j

xjM·,j = [1, 1...1]>1×n (2)

xj ≥ 0,∀j (3)

Note that
∑
jM·,j = [1, 1...1]>1×n since M is a transition matrix. Thus, the above linear

program must have a solution which implies that it must have a basic feasible solution (bfs)
x∗ [12]. Since x∗ is a bfs, it must have at least m− n zero entries. Therefore, there exists a
size n subset {j1, j2, ..., jn} such that for any j /∈ {j1, j2, ..., jn}, x∗j = 0.

Let M− = [x∗j1
Mj1 x∗j2

Mj2 ... xjnMjn ].∑
k x
∗
jk
Mjk =

∑
j x
∗
jM·,j = [1, 1...1]>1×n. Thus, M− is a transition matrix. Moreover,

F (M−) = F (
∑
k

x∗jkMjk)

=
∑
k

x∗jkf(Mjk) (Decomposability of F )

=
∑
j

x∗jf(M·,j) ≤
∑
j

f(M·,j) = F (M) (For any j /∈ {j1, j2, ..., jn}, x∗j = 0)

Therefore, we finish our construction of M−. The construction of M+ is similar.

Part 2: LP Based Algorithm

The LP based algorithm for arg minM∈Mn×∗
F (M) is in Algorithm 1. Solving arg maxM∈Mn×∗

F (M)
is similar.

We can first enumerate all possible row vectors of M ∈ Mn×∗ which are ( 1
ε + 1)n in

number. Then we can construct linear programming (1) with the all possible row vectors
and solve the linear programming to obtain a basic feasible solution. J

5.3 Maximizing the Total Expected Payment
In this section, we will show that for any signaling scheme M , we can always perturb M a
little bit to M ′ such that M ′ maximizes the optimal sum of expected payments of Alice and
Bob.

The A-B-A game is a constant-sum game if Bob is required to reveal (announce) his full
information to Alice, and Alice plays rationally in the final round. This is because the market
belief will be changed from Pr[XE ] to Pr[XE |XA, XB ] regardless of Alice’s signaling scheme.
In this case, information is fully aggregated. Therefore when Bob is required to announce
his full information, minimizing Bob’s expected payment is equivalent to maximizing Alice’s
expected payment since ABA is a constant sum game.

However, when Bob is not required to announce his full information, minimizing Bob’s
expected payment is not equivalent to maximizing Alice’s expected payment. For example,
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Algorithm 1 Minimizing Decomposable Function (MDF): arg minM∈Mn×∗
F (M)

function MDF(f(·), n, ε)
N = 1

ε

enumerate all [ `1
N
, `2
N
, ..., `n

N
]

where `1, `2, ..., `n ∈ {0, 1, 2, ..., N} and denote them by {M·,j}(N+1)n
j=1

solve the following linear program and return a BFS x∗

minx
∑

j
xjf(M·,j)

s.t.
∑

j
xjM·,j = [1, 1...1]>1×n

xj ≥ 0, ∀j

pick a size n subset {j1, j2, ..., jn} s.t. for any j /∈ {j1, j2, ..., jn}, x∗j = 0

return [x∗j1M·,j1 x∗j2M·,j2 ... x∗jnM·,jn ]

we consider the case where both XA and XB are i.i.d. binary bits (equal 1 with probability
(w.p.) 1

2 , equal 0 w.p. 1
2 ), and XE = XA ⊕XB . To minimize Bob’s expected payment, Alice

should reveal no information in the first stage. However, in this case, rational Bob will not
change the market belief and thus leaks no information of Bob’s signal. In this case, the total
payment for Alice and Bob is 0. On the other hand, if Alice commits a signaling scheme
where with some small probability ε she announces XA, and with probability 1− ε she flips
a coin and announces the result. This signaling scheme entices Bob to move the market thus
Alice can identify Bob’s full information to guarantee almost optimal expected payment of
Alice. Actually via a similar idea, for any signaling scheme M , we will construct signaling
schemes {M(ε)}ε ≈M such that for all sufficiently small ε > 0,

µ∗(M(ε)) = µ∗.

Recall that nA is the size of Alice’s private information space, nB is the size of Bob’s
private information space, nE is the size the event XE ’s outcome space and m is the size of
Alice’s announced signal space.

I Lemma 19 (Perturbing Signaling Scheme). Given the joint distribution over random
variables XA, XB , XE, consider an A-B-A game with commitment (XA, XB , XE , PS

G) ∈
PSR. For any signaling scheme M , for all sufficiently small 0 < ε < 1, we can always use
O(mnAn2

BnE) time 2 to perturb M to M(ε) such that

µ∗(M(ε)) = µ∗ and max
xA,σ
|M(xA, σ)−M(ε)(xA, σ)| ≤ Θ(mn2

Bε).

We defer the construction of the perturbing signaling scheme and the proof of Lemma 19
to Appendix A.

Now we are ready to give a full proof for the main theorem—Theorem 9 and Corollary 10.

Proof of Theorem 9. We construct the optimal signaling scheme of Alice using two steps.

Step 1: Minimizing Bob’s expected payment we first use O
( 1
ε )TnBnE

)
time to construct

the linear programming in Algorithm 1. We then spend O
(
L( 1

ε )T )
)
time to solve the

2 Note that the running time is independent with ε
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linear programming to obtain signaling scheme M†(ε) ∈MT×T . Note that µ∗B(M†(ε)) ≥
µ†B −Θ(ε+nE |G(ε)|+nE |G(1− ε)|) based on Lemma 15 and the fact that we enumerate
an ε-net of all possible column vectors in Algorithm 1.

Step 2: Maximizing the total expected payment: Lemma 19 shows for any signaling scheme
M , there exists an O(n2

BnE) algorithm that constructs M(ε′) such that

max
xA,σ
|M(xA, σ)−M(ε′)(xA, σ)| ≤ Θ(n2

Bε
′)

and µ∗(M(ε′)) = µ∗. Since the running time of the perturbing method is independent
with ε′, we can pick sufficiently small ε′ such that n2

Bε
′ ≤ ε. Thus, we can still use

O(n2
BnE) time to perturb M†(ε) to M∗(ε) such that

max
xA,σ
|M†(ε)(xA, σ)−M∗(ε)(xA, σ)| ≤ ε

and µ∗(M∗(ε)) = µ∗.
We can see

µ∗A(M∗(ε)) =µ∗(M∗(ε))− µ∗B(M∗(ε))
=µ∗ − µ∗B(M∗(ε))
≥µ∗ − µ∗B(M†(ε))−Θ(n2

A(ε+ nE |G(ε)|+ nE |G(1− ε)|)) (Lemma 15)

≥µ∗ − µ†B −Θ(n2
A(ε+ nE |G(ε)|+ nE |G(1− ε)|)) (step 1)

=µ∗ − µ†B −Θ(ε+ nE |G(ε)|+ nE |G(1− ε)|)
(nA = T is a constant integer)

=µ∗A −Θ(ε+ nE |G(ε)|+ nE |G(1− ε)|)

When Alice commits to signaling scheme M∗(ε), according to Claim 11 and Claim 12,

p∗2 = Pr[XE|Xσ, XB ] p∗3 = Pr[XE|XA, XB ]

where XA
M∗(ε)−−−−→ Xσ.

J

Proof of Corollary 10. τ = Θ(|ε|+ nE |G(ε)|+ nE |G(1− ε)|) ≤ Θ(εmin{λ,1}nE) implies that
there exists a positive constant C such that when τ is sufficiently small, 1

ε ≤ C(nEτ )
1

min{1,λ} .
Theorem 9 implies that we have a poly( 1

τ , nB , nE) complexity algorithm to have ±τ approx-
imation.

J

6 Discussion

Our FPTAS result depends on the assumption that Alice’s signal space is constant size. In
fact, the complexity of our algorithm depends exponentially on the size of Alice’s signal
space. Note that before our results even the case where Alice’s signal is binary was an open
question. In practice, to apply our results one might reduce the signal space size by merging
similar signals to hopefully obtain a good approximation.

A potential future direction is proving a hardness result for optimal information revelation
problem in the ABA case when Alice’s signal is arbitrarily large, or finding a better dependence
on the size of Alice’s signal space.
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A Proofs of Lemma 14, 15, 19

Proof of Lemma 14. We start to prove (i) and (ii).

Proof of (i)

Recall that if the distribution of X is represented by a row vector p, then the distribution
over M(X) is pM and Pr[M(x) = j] = p ·M·,j .

Thus Pr[Xσ = j] = Pr[M(XA) = j] = Pr[XA] ·M·,j is a linear function of the vector
M·,j .

Proof of (ii)

For ψj(M), since

Pr[XB = xB , XE = xE |Xσ = j] = Pr[XB = xB , XE = xE , Xσ = j]
Pr[Xσ = j]

= Pr[XB = xB , XE = xE ,XA] ·M·,j
Pr[XA] ·M·,j

=
Pr[XB = xB , XE = xE ,XA] · M·,j

S(M·,j)

Pr[XA] · M·,j
S(M·,j)

only depends on M·,j
S(M·,j) . Since ψj(M) only depends on the joint distribution over (XB , XE)

conditioning on Xσ = j, thus, ψj(M) only depends on M·,j
S(M·,j) as well.

J

Proof of Lemma 15. It is sufficient to show that if M ′ = M except M ′ij = Mij + ε, M ′ik =
Mik − ε,

|µ∗B(M ′)− µ∗B(M)| ≤ Θ(nE |G(ε) + nE |G(1− ε)|+ ε).

Note that when G(x) is convex, for sufficiently small constant ε, nE |G(ε)|+ nE |G(1− ε)|+ ε

is an increasing function of ε. Therefore, if M ′ = M except M ′ij = Mij + ε′, M ′ik = Mik − ε′
where ε′ ≤ ε, we still have

|µ∗B(M ′)− µ∗B(M)| ≤ Θ(nE |G(ε) + nE |G(1− ε)|+ ε).

The proof of Lemma 14 shows that µ∗B(M) can be decomposed as m parts and the only
part that relates to M·,j is

Pr[M(XA) = j]EXB |M(XA)=j [HG(Pr[XE|M(XA) = j,XB ])−HG(Pr[XE|M(XA) = j])]

We define γ(M·,j) := Pr[M(XA) = j]HG(Pr[XE|M(XA) = j]) and would like to the
below claim.

I Claim 20. When M ′·,j = M·,j except M ′ij = Mij + ε,

|γ(M·,j)− γ(M ′·,j)| ≤ Θ(nE |G(ε)|+ nE |G(1− ε)|+ ε).
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The above claim is valid for every possible joint distribution over XE , XA. The set of all
possible joint distributions over XE , XA equals the set of all possible joint distributions
over XE , XA conditioning XB for any XB. Therefore, the above claim also implies that
part Pr[M(XA) = j]EXB |M(XA)=jHG(Pr[XE|M(XA) = j,XB ]) also only fluctuates at most
Θ(nE |G(ε)|+ nE |G(1− ε)|+ ε) when we perturb Mij at most ε. We have similar analysis
for M·,k, therefore, Lemma 15 follows.

It remains to show the claim.

Proof of Claim 20. Without loss of generality we assume ε ≥ 0, otherwise we can exchange
M·,j and M ′·,j . In the proof, we will fix ε as a small constant and figure out the worst case of
the joint distribution over XA, XE and original scheme M such that |γ(M·,j)− γ(M ′·,j)| is
maximized.

Recall that γ(M·,j) = Pr[M(XA) = j]HG(Pr[XE|M(XA) = j]).

Part 1

We will first figure out the explicit relationship between ε, γ(M ′·,j) and γ(M·,j).

Pr[M(XA) = j] =
∑
xA

Pr[XA = xA]MxA,j = Pr[XA = i]Mij +K(−i)

Thus, Pr[M ′(XA) = j] = Pr[M(XA) = j] + εPr[XA = i].

q := Pr[XE|M(XA) = j] =Pr[XE,M(XA) = j]
Pr[M(XA) = j]

=
∑
xA

Pr[XA = xA]MxA,j Pr[XE|XA = xA]
Pr[M(XA) = j]

=Pr[XA = i]Mij Pr[XE|XA = i] +K(−i)q−i
Pr[M(XA) = j]

(q−i is a distribution over XE that is independent with Mij)

=Pr[XA = i]Mijqi +K(−i)q−i
Pr[M(XA) = j] (qi := Pr[XE|XA = i])

Thus, Pr[XE|M ′(XA) = j] = qi εPr[XA=i]
Pr[M(XA)=j]+εPr[XA=i] + q Pr[M(XA)=j]

Pr[M(XA)=j]+εPr[XA=i] .
Pr[XE|M ′(XA) = j] is a convex combination of the original forecast for XE— q =

Pr[XE|M(XA) = j] and the posterior forecast for XE conditioning on XA = i.
We define τ(ε) := εPr[XA=i]

Pr[M(XA)=j]+εPr[XA=i] . Note that

τ∗ := εPr[XA = i]
1 + εPr[XA = i] ≤ τ(ε) ≤ 1 (4)

τ∗ ≤ ε
1+ε .

Then we have Pr[XE|M ′(XA) = j] = τ(ε)qi + (1− τ(ε))q. By replacing Pr[M(XA) = j]
and Pr[M ′(XA) = j] by τ(ε) and Pr[XA = i], we obtain

γ(M ′·,j) = εPr[XA = i] 1
τ(ε)HG(τ(ε)qi + (1− τ(ε))q)

γ(M·,j) = εPr[XA = i] 1− τ(ε)
τ(ε) HG(q)
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Part 2

We start to calculate the worst τ(ε), q and qi that maximizes the gap between γ(M·,j) and
γ(M ′·,j). We first tune τ(ε) and then tune q and qi.

Part 2: Tuning τ(ε)

In this part, we focus on τ(ε) and omit other variables. We define g(τ) := HG(τqi+(1−τ)q).
Note that g(τ) is a convex function since HG is a convex function and |g(τ)| is also bounded
by 1 (Remark 2.1).

Then we have

γ(M ′·,j) = εPr[XA = i] 1
τ(ε)g(τ(ε)) γ(M·,j) = εPr[XA = i] 1− τ(ε)

τ(ε) g(0)

|γ(M ′·,j)− γ(M·,j)| =|εPr[XA = i](1− τ(ε)) 1
τ(ε) [g(τ(ε))− g(0)] + εPr[XA = i]g(τ(ε))|

≤|εPr[XA = i]g(τ(ε))− g(0)
τ(ε)− 0 + |εPr[XA = i]|

(1− τ(ε) ≤ 1, g(x) is bounded by 1 since |HG(p)| is bounded by 1 (Remark 2.1).)

Recall that

τ∗ := εPr[XA = i]
1 + εPr[XA = i] ≤ τ(ε) ≤ 1 (5)

Note that g(τ)−g(0)
τ−0 is an increasing function of 0 ≤ τ ≤ 1 when g is a convex function,

thus, | g(τ)−g(0)
τ−0 | is maximized in the endpoints,

|γ(M ′·,j)− γ(M·,j)| ≤εPr[XA = i]|g(τ)− g(0)
τ − 0 |+ ε

≤εPr[XA = i] max{|g(τ∗)− g(0)
τ∗ − 0 |, |g(1)− g(0)

1− 0 |}+ ε

≤2|[g(τ∗)− g(0)]|+ 2ε
(g(x) is bounded by 1 since |HG(p)| is bounded by 1 (Remark 2.1).)

Part 2: Tuning q and qi.

It remains to compute the upper-bound of |g(τ∗)− g(0)|.

max |g(τ∗)− g(0)|
= max

qi,q
|HG(τ∗qi + (1− τ∗)q)−HG(q)|

≤max
qi,q

∑
σ∈ΣE

|G(τ∗qi(σ) + (1− τ∗)q(σ))−G(q(σ))|

Consider h(x, y) := |G(τ∗x+ (1− τ∗)y)−G(y)|.

|G(τ∗x+ (1− τ∗)y)−G(y)| =|G(τ∗(x− y) + y)−G(y)|
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Fix τ∗(x− y). Note that τ∗(x− y) can be less than the any small constant by picking
sufficiently small constant ε. Since G(x) (Figure 1) is a convex function, G′(x) is a monotone
function. Thus, |G′(x)| is maximized in end points. h(x, y) = |G(τ∗(x− y) + y)−G(y)| is
maximized if y is one of the end points, that is, y = 0, 1.

When y = 0, 1, h(x, y) = |G(τ∗(x−y) +y)−G(y)| = |G(τ∗(x−y) +y)|. Note that |G(x)|
and |G(1 − x)| are increasing functions when x is sufficiently small when G(x) is convex.
Thus, to maximize h(x, y), we should pick |x− y| = 1 to maximize |τ∗(x− y)|. Therefore,
|G(τ∗(x− y) + y)| ≤ max{|G(τ∗)|, |G(1− τ∗)|} ≤ |G(τ∗)|+ |G(1− τ∗)|.

max |g(τ∗)− g(0)|

≤max
qi,q

∑
σ∈ΣE

|G(τ∗qi(σ) + (1− τ∗)q(σ))−G(q(σ))|

≤nE max
x,y

h(x, y)

≤nE(|G(τ∗)|+ |G(1− τ∗)|)

Recall that τ∗ := εPr[XA=i]
1+εPr[XA=i] ≤ ε,

|γ(M ′·,j)− γ(M·,j)| ≤2|g(τ∗)− g(0)|+ 2ε
≤2nE(|G(τ∗)|+ |G(1− τ∗)|) + 2ε
≤2nE(|G(ε)|+ |G(1− ε)|) + 2ε

(when x is small, both |G(x)| and |G(1− x)| are increasing functions.)

J

J

Proof of Lemma 19.

I Definition 21 (Bad pair). We say a pair (xB , x′B), xB , x′B ∈ ΣB , xB 6= x′B is bad for a
event E if

Pr[XE = ·|E,XB = xB ] = Pr[XE = ·|E,XB = x′B ].

Intuitively, a bad pair cannot be distinguished conditioning on event E.
According to Claim 12, to guarantee the total expected payment being maximal, we should

guarantee the information is fully aggregated, that is, Alice should identify all “meaningful”
information from Bob. If there exists a pair (xB , x′B), xB , x′B ∈ ΣB , xB 6= x′B such that

Pr[XE = ·|XA = xA, XB = xB ] = Pr[XE = ·|XA = xA, XB = x′B ],

then distinguishing the event XB = xB and the event XB = x′B is not meaningful for Alice
since she can think of xB , x′B as one signal without losing any information. Therefore, without
loss of generality, we assume every pair (xB , x′B) is good for at least one XA = xA.

We start our construction for M(ε). Adopting M(ε) helps Alice identify all meaningful
information of Bob means for every announced signal σ, there does not exist any bad pair
(XB = xB , XB = x′B) conditioning on Alice announced Xε

σ = σ where Xε
σ := M(ε)(XA).

We define Xσ := M(XA). We will show by changing each entry of M at most ε at most,
we can fix a bad pair and will not produce more bad pairs. In the end, we fix all bad pairs
and construct M(ε) that satisfies (i) and (ii).
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For a bad pair (xB , x′B) conditioning on that event that Alice announces Xσ = σ in stage
1. We know

1 =Pr[XE = xE |XB = xB , Xσ = σ]
Pr[XE = xE |XB = x′B , Xσ = σ]

=Pr[XE = xE , XB = xB , Xσ = σ] Pr[XB = x′B , Xσ = σ]
Pr[XE = xE , XB = x′B , Xσ = σ] Pr[XB = xB , Xσ = σ] (6)

=
∑
XA=xA Pr[XE = xE , XB = xB , XA = xA]M(xA, σ)∑
XA=xA Pr[XE = xE , XB = x′B , XA = xA]M(xA, σ)

×
∑
XA=xA Pr[XB = x′B , XA = xA]M(xA, σ)∑
XA=xA Pr[XB = xB , XA = xA]M(xA, σ) (7)

for all xE .
Note that we have assumed that for every pair is good for at least one XA = xA. Suppose

(xB , x′B) is good for XA = xA. If we add an ε in entry M(xA, σ) (if M(xA, σ) > 1− ε we can
subtract an ε and the analysis is similar. We can pick sufficiently small ε to guarantee either
0 ≤M(xA, σ) + ε ≤ 1 or 0 ≤M(xA, σ)− ε ≤ 1) and tune other M(xA, σ′), σ′ 6= σ arbitrarily
such that M(xA, ·) remains to be a valid distribution over Σ, and denote the new signaling
scheme as M ′ and define X ′σ := M ′(XA), we will know

Pr[XE = xE |XB = xB , X
′
σ = σ]

Pr[XE = xE |XB = x′B , X
′
σ = σ]

=(Pr[XE = xE , XB = xB , Xσ = σ] + εPr[XE = xE , XB = xB , XA = xA])
(Pr[XE = xE , XB = x′B , Xσ = σ] + εPr[XE = xE , XB = x′B , XA = xA]) (8)

· (Pr[XB = x′B , Xσ = σ] + εPr[XB = x′B , XA = xA])
(Pr[XB = xB , Xσ = σ] + εPr[XB = xB , XA = xA]) (according to formula (6))

Since (xB , x′B) is bad for Xσ = σ but good for XA = xA, there exists xE such that

Pr[XE = xE , XB = xB , Xσ = σ] Pr[XB = x′B , Xσ = σ]
Pr[XE = xE , XB = x′B , Xσ = σ] Pr[XB = xB , Xσ = σ] = 1

Pr[XE = xE , XB = xB , XA = xA] Pr[XB = x′B , XA = xA]
Pr[XE = xE , XB = x′B , XA = xA] Pr[XB = xB , XA = xA] 6= 1

Thus there exists constant λ 6= 0 and µ such that the difference between the denominator
and numerator of formula (8) can be represented as

λε2 + µε

Since λ 6= 0, we can always pick a sufficiently small ε0 > 0 such that λε2 + µε 6= 0 for all
0 < ε < ε0. For good pair (yB , y′B) for signal σ′,

Pr[XE = xE , XB = yB , Xσ = σ′] Pr[XB = y′B , Xσ = σ′]
Pr[XE = xE , XB = y′B , Xσ = σ′] Pr[XB = yB , Xσ = σ′] 6= 1

the difference between the denominator and numerator of good pair’s formula will change
from c 6= 0 to c+ Θ(ε) which can be non-zero as well when ε is sufficiently small. Thus, we
won’t produce more bad pairs.

The time depends on the number of bad pairs we need to fix since we fix them one by
one. The number of bad pairs is at most O(mn2

B). Thus we need O(mnAn2
BnE) time to

finish the construction and maxxA,σ |M(xA, σ)−M(ε)(xA, σ)| ≤ Θ(mn2
Bε). J
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B Experiment Inputs

The proper scoring rule we use in the experiment is the logarithmic scoring rule. Now
we give the input joint distributions over XA, XB , XE for the three examples. All of
XA, XB , XE are binary random variables in this case. Therefore, we can show the input
joint distribution via two 2 × 2 matrices. U1 = Pr[XA = 1,XB,XE] is a matrix where
U1(i, j) = Pr[XA = 1, XB = i,XE = j] and U2 = Pr[XA = 2,XB,XE] is a matrix where
U2(i, j) = Pr[XA = 2, XB = i,XE = j].

Left input Middle input Right input

Pr[XA = 1,XB,XE] 0.0900 0.0900
0.0900 0.1800

0.2209 0.0947
0.0947 0.0199

0.0100 0.0100
0.0100 0.0200

Pr[XA = 2,XB,XE] 0.0900 0.0900
0.0900 0.2800

0.0947 0.0406
0.0406 0.3942

0.0100 0.0100
0.0100 0.9200

Table 1 Experiment inputs
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