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Abstract

We show that for k ≥ 3 even the Ω(n) level of the Lasserre hierarchy cannot disprove a
random k-CSP instance over any predicate type implied by k-XOR constraints, for example
k-SAT or k-XOR. (One constant is said to imply another if the latter is true whenever the
former is. For example k-XOR constraints imply k-CNF constraints.) As a result the Ω(n) level
Lasserre relaxation fails to approximate such CSPs better than the trivial, random algorithm.
As corollaries, we obtain Ω(n) level integrality gaps for the Lasserre hierarchy of 7

6 − ε for Ver-
texCover, 2− ε for k-UniformHypergraphVertexCover, and any constant for
k-UniformHypergraphIndependentSet. This is the first construction of a Lasserre inte-
grality gap.

Our construction is notable for its simplicity. It simplifies, strengthens, and helps to explain
several previous results.

1 Introduction

The Lasserre hierarchy [Las01] is a sequence of semidefinite relaxations for certain 0-1 polynomial
programs, each one more constrained than the last. The kth level of the Lasserre hierarchy requires
that any set of k original vectors be self-consistent in a very strong way. If an integer program
has n variables, the nth level of the Lasserre hierarchy is sufficient to obtain a tight relaxation
where the only feasible solutions are convex combinations of integral solutions. This is because the
nth level requires that the entire set of n vectors are consistent. If one starts from a k-CSP with
poly(n) constraints, then it is possible to optimize over the set of solutions defined by the kth level
of Lasserre in time O(nO(k)), which is sub-exponential for k = o(n/ log n).

The Lasserre hierarchy is similar to the Lovasz-Schrijver hierarchies [LS91], denoted LS and LS+ for
the linear and semidefinite versions respectively, and the Sherali-Adams [SA90] hierarchy, denoted
SA; however, the Lasserre hierarchy is stronger [Lau03]. The region of feasible solutions in `th level
of the Lasserre hierarchy is always contained in the region of feasible solutions in `th level of LS,
LS+, and SA1. A more complete comparison can be found in [Lau03]. While there have been a
growing number of integrality gap lower bounds for the LS[ABL02, ABLT06, Tou06, STT07b], the
LS+[BOGH+03, AAT05, STT07a, GMPT06], and the SA[dlVKM07, CMM07] hierarchies, similar
bounds for the Lasserre hierarchy have remained elusive.

The study of these hierarchies is motivated by the success of semidefinite programs in approximation
algorithms. In many interesting cases, for small constant `, the `th level of the Lasserre hierarchy
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under a National Science Foundation Graduate Research Fellowship. Work for this paper was done while author was
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1In our definition, for ease of presentation, the `th level of Lasserre for a k-CSP is only meaningful if ` ≥ k, but
this can be modified.
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provides the best known polynomial-time computable approximation. For example, the first level
of the Lasserre hierarchy for the IndependentSet problem implies the Lovasz θ-function and
for the MaxCut problem gives the Goemans-Williamson relaxation. The ARV relaxation of the
SparsestCut problem is no stronger than the relaxation given in the third level of Lasserre.

In addition, recent work by Eden Chlamtac [Chl07] has shown improved approximation algorithms
for coloring and independent set in 3-uniform hypergraphs. In [Chl07] the Lasserre hierarchy was
used to find and/or analyze the constraints which led to improved approximations. This work is
unlike the aforementioned work, where it was only later realized that the approximation results
could be viewed as an application of semidefinite program hierarchies.

Integrality gap results for Lasserre are thus very strong unconditional negative results, as they
apply to a “model of computation” that includes the best known algorithms for several problems.

1.1 Previous Lower-Bounds Work

While this is the only work known to us on Lasserre integrality gaps, results are already known
about the weaker hierarchical models for several problems, including many problems we study here.

Buresh-Oppenheim, Galesy, Hoory, Magen and Pitassi [BOGH+03], and Alekhnovich, Arora, Tourlakis
[AAT05] prove Ω(n) LS+ round lower bounds for proving the unsatisfiability of random instances
of 3-SAT (and, in general, k-SAT with k ≥ 3) and Ω(n)2 round lower bounds for achieving ap-
proximation factors better than 7/8− ε for Max 3-SAT, better than (1− ε) ln n for Set Cover, and
better than k− 1− ε for HypergraphVertexCover in k-uniform hypergraphs. They leave open
the question of proving LS+ round lower bounds for approximating the Vertex Cover problem.

Much work has been done on Vertex Cover. Schoenebeck, Tulsiani, and Trevisan[STT07b] show
an integrality gap of 2 − ε remains after Ω(n) rounds of LS, which is optimal. This build on the
previous work of Arora, Bollobas, Lovasz, and Tourlakis [ABL02, ABLT06, Tou06] who prove that
even after Ω(log n) rounds the integrality gap of LS is at least 2−ε, and that even after Ω((log n)2)
rounds the integrality gap of LS is at least 1.5− ε.

Somewhat weaker results are known for LS+. The best known results are incomparable and were
show by shown by Georgiou, Magen, Pitassi, and Tourlakis[GMPT06] and Schoenebeck, Tulsiani,
and Trevisan [STT07a]. The former result [GMPT06] builds on the previous ideas of Goemans
and Kleinberg [KG98] and Charikar [Cha02], and shows that an integrality gap of 2 − ε survives

Ω(
√

log n
log log n) rounds of LS+. The later result shows an integrality gap of 7

6−ε survives Ω(n) rounds.
This result builds on past research which we review here as it is relevant for understanding the
results of this paper.

The result of Feige and Ofek [FO06] immediately implies a 17/16− ε integrality gap for one round
of LS+, and the way in which they prove their result implies also the stronger 7/6− ε bound. The
standard reduction from Max 3-SAT to VertexCover shows that if one is able to approximate
VertexCover within a factor better than 17/16 then one can approximate Max 3-SAT within
a factor better than 7/8. This fact, and the 7/8 − ε integrality gap for Max 3-SAT of [AAT05],
however do not suffice to derive an LS+ integrality gap result for VertexCover. The reason is
that reducing an instance of Max 3SAT to a graph, and then applying a VertexCover relaxation
to the graph, defines a semidefinite program that is possibly tighter than the one obtained by
a direct relaxation of the Max 3-SAT problem. Feige and Ofek [FO06] are able to analyze the
value of the Lovasz θ-function of the graph obtained by taking a random 3-SAT instance and then

2In all integrality gap containing an ε, the constant in the Ω depends on ε.
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reducing it to an instance of IndependentSet (or, equivalently, of VertexCover).

For the Sherali-Adams hierarchy, Charikar, Makarychev, and Makarychev [CMM07] show that, for
some ε, after nε rounds an integrality gap of 2− o(1) remains.

Other results by Charikar [Cha02] and Hatami, Magen, and Markakis [HMM06] prove a 2 − o(1)
integrality gap result for semidefinite programming relaxations of Vertex Cover that include addi-
tional inequalities. Charikar’s relaxation is implied by the relaxation obtained after two rounds of
Lasserre. The semidefinite lower bound of Hatami et al is implied after five rounds of Lasserre.

It was compatible with previous results that after a constant number of rounds of Lasserre the
integrality gap for Vertex Cover could become 1 + o(1).

Our Result

The main result of this paper, is a proof that, for k ≥ 3, the Ω(n)th level of Lasserre cannot prove
that a random k-CSP over any predicate implied by k-XOR is unsatisfiable. From this main results
it quickly follows that the Ω(n)th level of Lasserre:

• cannot prove a random k-XOR formula unsatisfiable.

• cannot prove a random k-SAT formula unsatisfiable.

• contains integrality gaps of 1/2 + ε for Max-k-XOR

• contains integrality gaps of 1− 1
2k + ε for Max k-SAT.

• contains integrality gaps of 7
6 − ε for VertexCover.

• contains integrality gaps of any constant for k-UniformHypergraphVertexCover.

• contains integrality gaps of Ω(1) for k-UniformHypergraphIndependentSet.

In addition to the power of our result, it is also very short and simple. It extends and simplifies
results in [STT07a] and [AAT05]. To a large extent it also explains the proofs of [FO06] and
[STT07a], and can be seen as being inspired by these results.

Road Map

In Section 2 we will define notation and provide background to our results. In Section 3 we will prove
the main result. In Section 4 we will state and prove the remaining results, which are corollaries
of the main result.

2 Background and Notation

We denote the set of Boolean variables [n] = {1, . . . , n}. Let the range of variables be denoted
x = {xi}i∈[n] = {0, 1}n. For I ⊆ {1, . . . , n}, let xI = {xi}i∈I be the projection of x to the
coordinates of I. We will consider programs where each constraint is local, captured by the following
definition:

Definition 1 A k-constraint Cf
I is a function f : xI → {0, 1} where |I| ≤ k.
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Note that given a constraint Cf
I where f : xI → {0, 1}, we can naturally extend it to a constraint

Cf
J where I ⊆ J and f : xJ → {0, 1} by first projecting to the variables of I and then applying f .

Sometimes we abuse notation and denote by Cf
I the set {xI ∈ xI : f(xI) = 1}.

Definition 2 A k-constraint Cf
I implies another k-constraint Cg

I if Cf
I ⊆ Cg

I . We say that a
predicate is XOR-implied if it is implied by either parity or its negation.

For notational convenience, we will denote by CxI
I the constraint Cf

I where f(x̄I) = 1 if x̄I = xI

and 0 otherwise. Also, we denote by C
~1
I the constraint CxI

I , where xI is one in each coordinate; by
C∗

I the constraint that is always satisfied; and by C∅
I the constraint that is never satisfied.

We will look at relaxations for two types of integer programs. In the first, we have a set of
constraints, and would like to know if there is any feasible solution. In the second, we have a
set of constraints and would like to maximize some objective function subject to satisfying the
constraints. We formalize the notions here:

Definition 3 A k-constraint satisfiability problem 〈x,Cf
I〉 is a set of n Boolean variables x =

{0, 1}n, and a set of k-constraints {Cf
I }.

Definition 4 A k-constraint maximization (or minimization) problem 〈x,Cf
I,M〉 is a set of n

Boolean variables x = {0, 1}n, a set of k-constraints {Cf
I }, and a polynomial objective function M

of total degree at most k such that M : x → Z is to be maximized (or minimized).

Lasserre Let 〈x,Cf
I, M〉 be a constraint maximization (or minimization) problem. Ideally, we

would like to say that a solution (y1, . . . , yn) in the feasible region of any level of the Lasserre
hierarchy must be the convex combination of integer solutions; however, enforcing this directly is
difficult. Instead we note that if (y1, . . . , yn) =

∑m
j=1 pj(z

j
1, . . . , z

j
n) is from a probability distribution

of integral solutions, that is (y1, . . . , yn) =
∑m

j=1 pj(z
j
1, . . . , z

j
n) where zj

i ∈ {0, 1}, zj = (zj
1, . . . , z

j
n)

are a feasible integral solutions, and
∑m

j=1 pj = 1 then, for each possible k-constraint Cf
I we can

produce a vector3

v
Cf

I
(j) =

{ √
pj Cf

I (zj) = 1
0 otherwise

(1)

If we define scalar variables x
Cf

I
so that x

Cf
I

= ||v
Cf

I
||2, and think of (y1, . . . , yn) as a probability

distribution over integer solutions, then x
Cf

I
is the probability that a randomly drawn solution

satisfies the constraint Cf
I . These vectors will satisfy all the constraints of the Lasserre hierarchy

at any level. If the reader is unfamiliar with the definition of Lasserre, then it is a straightforward
and useful exercise to verify this fact.

Definition 5 The rth round of Lasserre on the k-constraint maximization problem 〈x,Cf
I,M〉 is

the semidefinite program with a variable v
Cf

I
for every k-constraint Cf

I (not just those in Cf
I). Let

M =
∑m

i=1 wi
∏

j∈Ii
xj be the objective function expressed as the weighted sum of monomials. We

3That is for any function f : xI → {0, 1} where |I| ≤ k, not simply the constraints that appear in the constraint
maximization problem.
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will denote by v0 the vector for the constraint C∗
∅ , denote by vxI the vector for the constraint CxI

I ,
denote by vi the vector for the constraint C

~1
{i}, and denote by v

~1
xI

the vector for the constraint C
~1
I .

max
m∑

i=1

wi||v~1
Ii
||2

where

∀I ⊆ [n] ||vC∗I ||2 = 1 (2)

∀fI ∈ Cf
I ||v

Cf
I
||2 = 1 (3)

∀Cf
I , Cg

J , Cf ′
I′ , C

g′
J ′ where

I ∪ J = I ′ ∪ J ′

(Cf
I · Cg

J) ≡ (Cf ′
I′ · Cg′

J ′)
〈v

Cf
I
, vCg

J
〉 = 〈v

Cf ′
I′

, v
Cg′

J′
〉

(4)

∀Cf
I v

Cf
I

=
∑

xI∈Cf
I

vxI (5)

We compare the equivalence of (Cf
I · Cg

J) and (Cf ′
I′ · Cg′

J ′) as functions on the domain xI∪J .

The semidefinite program for the rth Lasserre round of a satisfiability problem is the same, but we
only check for the existence of feasibility, we do not try to maximize over any objective function. 4

While the equations are confusing, the intuition is that the vectors define a probability distribution
on any set of up to r coordinates (Equations 2, 4, and 5); that the probability distributions always
satisfy the constraints (Equation 5); and that the probability distributions properly patch together
(Equation 4). It is easy to check the suggested vectors satisfy all these constraints.

Claim 6 Fix I ⊆ [n] such that |I| ≤ r. Then we can get probability distribution over the elements
of xI ∈ xI by defining the probability of xI to be ||vxI ||2. Actually, these vectors are all orthogonal,
and if you sum over them, you get v0.

Proof: If xI , x
′
I ∈ xI , then vxI and vx′I are orthogonal because CxI

I ·Cx′I
I = C∅

I and so by Equation 4
〈vxI , vx′I 〉 = ||vC∅I

||2 and by Equation 5 ||vC∅I
||2 = 0

Thus, by Equation 2 then Equation 5: 1 = ||vC∗I ||2 = ||∑xI∈xI
vxI ||2 =

∑
xI∈xI

||vxI ||2. So indeed
we have a probability distribution.

By Equations 2 and 4 ∀I ⊆ [n], vC∗I = v0 because 〈vC∗I − v0, vC∗I 〉 = ||vC∗I ||2− 〈vC∗I , v0〉 = 1− 1 = 0.
¤

In applications, it is usually important that we have vectors and not simply local distributions
that patch together. The fact that we have vectors gives some global orientation. The Goemans-
Williamson MaxCut algorithm generates a global cut with a hyperplane. It is not clear how to
do this with a local distributions alone.

4This definition is slightly different, but equivalent to other definitions of the kth level of the Lasserre hierarchy.
The way that it is stated, it would require double exponential time to solve the rth level. This is easily remedied by

only defining vectors for the constraints C
~1
I and using linear combinations of these vectors to define the remaining

vectors. We present it like this for ease of notation.
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Claim 7 If Equations 2, 4 and 5 are satisfied, then Equation 3 is equivalent to requiring that
||vxI ||2 = 0 for all xI where xI 6∈ Cf

I for some Cf
I ∈ Cf

I.

Proof: We only used Equations 2, 4 and 5 to show Claim 6. So we know that the vxI are all
orthogonal and by Equation 5 additionally know that

0 = 1− 1 = ||v0||2 − 1 = ||C∗
I ||2 − 1 = ||

∑
xI∈xI

vxI ||2 − ||
∑

xI∈Cf
I

vxI ||2

=
∑

xI∈xI

||vxI ||2 −
∑

xI∈Cf
I

||vxI ||2 =
∑

xI 6∈Cf
I

||vxI ||2

¤

Problems Studied Let P be a set of boolean predicates on k-variables. In a k-CSP-P we are
given a set of predicates (or clauses) which are each taken from P. Each clause becomes a constraint,
and we are asked if all the constraints can be simultaneously satisfied. In Max- k-CSP-P we want
to find the maximum number of clauses that can be satisfied.

We can define a distribution D over predicates in some P. To sample a random k-CSP-P formula
with ∆n clauses, we uniformly and draw ∆n clauses from the set of 2k

(
n
k

)|P| possible clauses by first
uniformly and independently sample each set of k variables and the sign applied to each variable,
and then draw a predicate from D.

In k-XOR we are given a set of clauses which are each of the form
⊕

i∈I xi = 0/1 where |I| ≤ k.
We will denote the clause

⊕
i∈I xi = b by C⊕I=b

I . Each clause becomes a constraint, and we are
asked if all the constraints can be simultaneously satisfied. To sample a random k-XOR formula
with ∆n clauses, we uniformly and independently draw ∆n clauses from the set of 2

(
n
k

)
possible

clauses.

In k-SAT we are given a set of clauses which are each of the form ∨i∈Ixi where |I| ≤ k. Each
clause becomes a constraint, and we are asked if all the constraints can be simultaneously satisfied.
In Max k-SAT we want to find the maximum number of clauses that can be satisfied. To sample
a random k-SAT formula with ∆n clauses, we uniformly and independently draw ∆n clauses from
the set of 2k

(
n
k

)
possible clauses.

Definition 8 Give a distribution D over predicates in some P we define r(P) to be the probability
that a random assignment satisfies a predicate drawn from D.

For example, in k-XOR, D is uniformly distributed between k-parity and its negation, and
r(k-XOR) = 1/2.

In VertexCover we are given a graph G = (V, E). There is a Boolean variable xi for each vertex
i ∈ V . For each edge (i, j) ∈ E we have a constraint which says that both xi and xj cannot be
zero. We are asked to minimize

∑
i∈V xi.

In k-UniformHypergraphIndependentSet we are given a k-uniform hypergraph G = (V,E).
There is a variable xi for each vertex v ∈ V . For each edge (i1, . . . , ik) ∈ E we have a constraint
which says that not all xi1 , . . . , xik can be one. We are asked to maximize

∑
i∈V xi.

6



k-UniformHypergraphVertexCover is the same as k-UniformHypergraphIndependentSet
except that for each edge (i1, . . . , ik) ∈ E we have a constraint which says that at least one of
xi1 , . . . , xik must be one. We are asked to minimize.

∑
i∈V xi.

Background Results Sufficiently dense random k-CSP formulae are far from being satisfiable
as the next proposition states.

Proposition 9 For any δ > 0, with probability 1− o(1), if ϕ is a random k-CSP chosen from the
distribution D with ∆n clauses where ∆ ≥ ln 2

2δ2 + 1, at most a r(D) + δ fraction of the clauses of ϕ
can be simultaneously satisfied.

Proposition 9 is well known in the literature, we provide a proof in the appendix for completion.

Definition 10 Width-w resolution on an XOR formula ϕ, successively builds up new clauses by
deriving a new clause

⊕
i∈I∆J xi = b ⊕ b′ whenever the symmetric difference |I∆J | ≤ w and the

clauses
⊕

i∈I xi = b and
⊕

i∈I xi = b′ had either already been derived or belong to ϕ.

Width-w resolution proves a formula ϕ unsatisfiable if it derives the clause 0 = 1. The following
theorem shows that for random 3-XOR formula, even for quite large w, width-w resolution fails to
produce a contradiction.

Theorem 11 For k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2−1, if ϕ is a random k-XOR formula with
density dnε, then with probability 1 − o(1) ϕ cannot be disproved by width αn

1− ε
k/2−γ−1 resolution

nor can any variable be resolved to true or false. Furthermore, this is true even if the parity sign
(whether the predicate is parity or its negation) of each clause is adversatively chosen.

Wigderson and Ben-Sasson [BSW01] show that a variant of Theorem 11 holds for k-SAT formula.
The proof of [BSW01] extends to show Theorem 11 using standard techniques. We include a proof
in the appendix for completeness.

3 k-CSPs over XOR-Implied Predicates

We now present the main theorem of the paper.

Theorem 12 Let D be a distribution over a set of XOR-implied k-CSP predicates P. Then for
every δ, γ, d > 0 and 0 ≤ ε < k/2 − 1 (such that if ε = 0, then d ≥ ln 2

2δ2 + 1) there exists some
constants α ≥ 0, such that with probability 1−o(1), if ϕ is a random k-CSP formula drawn according
to D with ∆n clauses where ∆ = dnε both the following are true:

1. at most a r(D) + δ fraction of the clauses of ϕ can be simultaneously satisfied.

2. The αn
1− ε

k/2−1−γ level of the Lasserre hierarchy permits a feasible solution.

This theorem implies integrality gaps for XOR-implied k-CSPs because the Lasserre relaxation
cannot refute that all clauses can be simultaneously satisfied, but, in fact, at most r(D)+ δ clauses
can be simultaneously satisfied. Notice that an algorithm that simply guesses a random assignment
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would expect to satisfy an r(D) fraction of clauses in expectation. In particular this theorem shows
that with high probability a random k-XOR formula cannot be refuted by Ω(n) rounds of Lasserre
which gives an integrality gap of 1/2 + ε for Ω(n) rounds of Lasserre for Max k-XOR. Also, this
theorem shows that with high probability a random 3-CNF formula cannot be refuted by Ω(n)
rounds of Lasserre which gives an integrality gap of 7/8 + ε for Ω(n) rounds of Lasserre for Max
k-SAT.

Theorem 12 follows almost immediately from Theorem 11, Proposition 9, and the following Lemma.

Lemma 13 (Main Lemma) If a k-XOR formula ϕ cannot be disproved by width-w resolution,
then the w

4 th round of the Lasserre hierarchy permits a feasible solution.

Proof:[of Theorem 12] Fix δ, γ, d, ε,P,D as allowed in theorem statement, and let ϕ be a random
k-CSP P formula with ∆n clauses where ∆ = dnε. By Proposition 9, 1) holds with probability
1− o(1) because for sufficiently large n, ∆ = dnε > ln 2

2δ2 + 1.

We can write ϕ as a k-XOR formula ϕXOR so that ϕXOR ⇒ ϕ. Now the Lasserre relaxation for
ϕXOR is strictly tighter than that for ϕ. Let α′ be as guaranteed in Theorem 11 using k, d, γ, and
ε as inputs so that by Theorem 11 we know that with probability 1− o(1) it is the case that ϕXOR

cannot be disproved by width-α′n1− ε
k/2−γ−1 resolution. Let α = α′

4 . By Lemma 13, ϕXOR cannot
be proven unsatisfiable by α′

4 n
1− ε

k/2−γ−1 = αn
1− ε

k/2−γ−1 rounds of Lasserre. Because the Lasserre
relaxation for ϕXOR is tighter than that for ϕXOR it must be the case that ϕ cannot be proven
unsatisfiable by Lasserre either. ¤

Lemma 13 is the main original technical contribution of this work. In the rest of this section we
first provide some intuition for the proof of Lemma 13 and then provide its proof.

For a first attempt to prove the lemma we can observe that for any particular set I of at most w/4
variables, we can construct vectors for all Cf

I as follows: 1) Run bounded width resolution to de-
rive a set of constraints that any satisfying assignment must satisfy. 2) Consider the set SATI where
SATI = {xI ∈ xI : xI satisfies all the constaints derived by the resolution whose support is contained in I}.
Randomize over SATI and construct the vectors as we saw in Equation 1. These vectors will satisfy
the Lasserre Equations 2, 3, and 5; however, these vectors will fail miserably to satisfy Equation 4
of the Lasserre constraints. We have set up valid local distributions; however, these distribution
do not patch together consistently. The problem is that when the take the dot product of vxI and
vxJ , the values in each coordinate mean something completely different.

To remedy this misalignment we design a space of equivalence classes of XORs of at most w/2 vari-
ables which we will use to index the coordinates of each vector. We will say that

⊕
i∈I xi ∼

⊕
j∈J xj

if for all assignments that satisfy the derived resolution clauses,
⊕

i∈I xi determines
⊕

i∈J xi and
vice versa. For example, if ϕ contained the clause x1 ⊕ x2 ⊕ x3 = 0 then x1 ⊕ x2 ∼ x3 because
whatever x1 ⊕ x2 is, x3 must be the opposite. With some ∼ equivalent clauses, fixing one clause
automatically fixes the ∼ equivalent clause to the opposite value (as above). With other ∼ equiva-
lent clauses, fixing one clause automatically fixes the ∼ equivalent clause to the same value. Using
this fact, we can split each equivalence class of ∼ equivalent clauses into two parts, so that the ∼
equivalent clauses in each part always fix each other to the same value, and ∼ equivalent clauses
in opposite parts always fix each other to the opposite value. We can arbitrarily label one part +
and the other −. There is a bijection between the set SATI and the equivalence classes of

⊕
i∈J xi

where J ⊆ I, because, intuitively, each time resolution derives a new relation, the dimension of
each of these sets is reduced by 1.
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Finally, for each xI ∈ SATI we construct a vector where each coordinate is indexed by the ∼
equivalence classes we just produced. This vector is ± 1

|SATI | in each equivalence class that contains
an set J ⊆ I, and is 0 elsewhere. The sign is + if xI agrees with the + side of the equivalence
class and − otherwise. If we project onto only the non-zero coordinates, then the mapping of our
previously constructed vectors (that failed to satisfy Equation 4) to these new vectors is simply
a rotation. This implies that all the Lasserre equations that were previously satisfied will still be
satisfied. This rotation is similar to taking a Fourier transform. If any two distinct vectors vxI and
vxJ disagree in any non-zero location, they disagree in exactly 1/2 of the places and are orthogonal.
Otherwise the signs agree in every non-zero coordinate. These facts allow us to show that these
vectors do satisfy Equation 4 of the Lasserre constraints.

We will now prove Lemma 13.

Proof:[Lemma 13]

Construction of Vectors

We first define a set C which later will be used to index the coordinates of the vectors.

Let ϕ be a k-XOR formula that has no width-w resolution. Let res-C be the collection of clauses
generated by width-w resolution running on ϕ. By the hypothesis of the Lemma we are guaranteed
that we cannot derive a contradiction.

Let w
2 -C be the collection of all possible XOR clauses over at most w

2 variables. Now consider the
set w

2 -C/res-C. That is we partition w
2 -C into equivalence classes where C⊕I=b

I ∼res-C C⊕J=b′
J ⇔

C
⊕(I∆J)=(b⊕b′)
I∆J ∈ res-C.

Let S|w/2| = {⊕i∈I xi : I ⊆ [n] : |I| ≤ w/2}. Let F ⊆ S|w/2| be the XOR functions fixed by
res-C, that is I ∈ F ⇔ ∃b ∈ {0, 1} where C⊕I=b

I ∈ res-C. Consider the set C = S|w/2|/F–that is
I ∼F J ⇔ I∆J ∈ F .

For each equivalence class [I] ∈ C, we arbitrarily choose some I0 ∈ [I] (for notational convenience,
we always choose ∅ ∈ [∅]). We define a function π : S|w/2| → {+1,−1} such that

π(I) =

{
+1 C⊕I=0

I ∼res-C C⊕I0=0
I0

−1 C⊕I=0
I ∼res-C C⊕I0=1

I0

Claim 14 ∼F and ∼res-C are equivalence relations and π is well defined.

Fix some V ⊆ [n] where |V | ≤ w/4. Let S
|w/2|
V = {⊕i∈I xi : I ⊆ V } denote the collection of all

possible XOR functions over V . Similarly define FV and (res-C)V . We will denote S
|w/2|
V simply

SV in the future.

If we interpret SV as a group under the action of symmetric difference, then FV is a subgroup of SV .
We can then consider the group SV /F–that is I ∼F J ⇔ I∆J ∈ F . Note also that Sv/F ∼= Sv/Fv.

Let SATV ⊆ xV where xV ∈ SATV if it satisfies all the clauses in (res-C)V . |SAT∅| = 1 by
convention.

Claim 15 |SATV | = |SV /FV |

Proof: Consider the natural bijection between xV and SV where xV ∈ xV is considered as a
function that XORs the non-zero bits of xV . Then we can move freely between those two spaces,
so it makes sense to write xV /FV

∼= SV /FV . Let [∅] be the equivalence class of ∅ in SV /FV , and let

9



x̄V ∈ xV be a satisfying assignment to all the clauses in (res-C)V . Then for xV ∈ xV , xV ∈ SATV

if and only if xV ∈ x̄V + [∅]. It follows that |SATV | = |xV /FV | = |SV /FV |. ¤

We now define the vectors. Let |I| ≤ w/4. If xI 6∈ SATI , vxI = 0. Otherwise:

vxI ([J ]) =

{
(−1)⊕k∈Kxkπ(K)

|SATI | K ∈ [J ] s.t. K ⊆ I

0 ∀K ∈ [J ] K 6⊆ I

where the range of the coordinates is [J ] ∈ C
Recall that vxI is the constraint in xI that is only satisfied on input xI .

Intuitively, each vector vxI is non-zero exactly in the coordinates corresponding to [J ] ∈ SI/FI .
The sign of each non-zero coordinate [J ] ∈ SI/FI corresponds to the evaluation of ⊕j∈Jxj (and the
π(K) terms makes the vectors well defined).

We obtain the vectors for other constraints by taking linear combinations of these vectors.

v
Cf

I
=

∑

xI :Cf
I (xI)=1

vxI

Remark 1 If the width-bounded resolution not only does not refute ϕ, but also does not fix any
variable xi to either true or false, then for every i ∈ [n], |SAT{i}| = 2 and so ||vi||2 = 1/2.

Proof that constructed vectors satisfy Lasserre constraints

To show that Equations 2 and 3 are satisfied, we use the following claim.

Claim 16

〈vxI , vxJ 〉 =
{ 1

|SATI∪J | ∀[K] ∈ (SI/F ∩ SJ/F ), sign(vxI ([K])) = sign(vxJ ([K]))
0 otherwise

For any xI ∈ xI and xJ ∈ xJ , only coordinates where both vxI and vxJ are non-zero will contribute
to the value of 〈vxI , vxJ 〉. Claim 16 states that either there is no cancelation amongst non-zero
coordinates (all the coordinates where both vxI and vxJ are non-zero have the same sign), or there
is complete cancelation (〈vxI , vxJ 〉 = 0).

Proof: Note that vxI and vxJ are both non-zero only in the coordinates [K] ∈ SI/F ∩SJ/F . Let’s
say that for some [K] ∈ (SI/F ∩ SJ/F ), sign(vxI ([K])) 6= sign(vxJ ([K])). We can use this [K] to
show that the signs of vxI and vxJ differ on exactly half of the coordinates of SI/F ∩ SJ/F and
thus 〈vxI , vxJ 〉 = 0.

Let [K1], [K2], . . . , [K`] be a complete list of the elements in (SI/F ∩ SJ/F ). Now consider the list
[K1 ◦K], [K2 ◦K], . . . , [K` ◦K] which is a permutation of the first list. Because sign([Ki ◦K]) =
sign([Ki]) · sign([K]), if sign(vxI ([Ki])) = sign(vxJ ([Ki])) then sign(vxI ([Ki ◦K])) 6= sign(vxJ ([Ki ◦
K])), and if sign(vxI ([Ki])) 6= sign(vxJ ([Ki])) then sign(vxI ([Ki ◦K])) = sign(vxJ ([Ki ◦K])). But
because we simply permuted the coordinates, we know that the number of agreements (and respec-
tively disagreements) in the first list are the same as the number of agreements (and respectively
disagreements) in the second list. And so, the number of agreeing and disagreeing coordinates are
equal.

10



Now assume that ∀[K] ∈ (SI/F ∩ SI/F ), sign(vxI ([K])) = sign(vxJ ([K])). If we view SI/F and
SJ/F as subgroups of SI∪J/F we see that |SI/F ||SJ/F |

|SI/F∪SJ/F | = |SI∪J/F |. Combining this with the fact
that |SI∪J/F | = |SI∪J/FI∪J | = |SATI∪J | from Claim 15 we get that

〈vxI , vxJ 〉 =
|SI/F ∩ SJ/F |
|SATI ||SATJ | =

|SI/F ∩ SJ/F |
|SI/F ||SJ/F | =

1
|SI∪J/F | =

1
|SATI∪J |

¤

Equation 2, that ||vC∗I ||2 = 1, is satisfied, because

||vC∗I ||2 = ||
∑

xI∈xI

vxI ||2 =
∑

xI∈xI

||vxI ||2 =
∑

xI∈SATI

||vxI ||2 = |SATI | 1
|SATI |

Also recall, by our construction v0 = (1, 0, . . . , 0) where the 1 is in the location indexed by [∅].
Equation 3 states that ∀fI ∈ Cf

I||vCf
I
||2 = 1. By construction ||vxI ||2 = 1

|SATI | if xI ∈ SATI

(because each non-zero coordinate of vxI is ± 1
|SATI | and there are |SATI | such coordinates) and

||vxI ||2 = 0 if xI 6∈ SATI by construction. Also, by Claim 16 vxI and vx′I are orthogonal for xI 6= x′I .

To show that Equation 3 is satisfied we must show that for any clause C⊕I=b
I that appears in ϕ,

||vC⊕I=b
I

||2 = 1. Fix some such clause C⊕I=b
I ∈ ϕ. Then ||v

Cf
I
||2 =

∑
xI∈SATI

||vxI ||2 = 1.

Equation 4 states that for all Cf
I , Cg

J , Cf ′
I′ , C

g′
J ′ we have that 〈v

Cf
I
, vCg

J
〉 = 〈v

Cf ′
I′

, v
Cg′

J′
〉 whenever

I ∪ J = I ′ ∪ J ′ and (Cf
I · Cg

J) ≡ (Cf ′
I′ · Cg′

J ′). To show that Equation 4 is satisfied we show that

〈v
Cf

I
, vCg

J
〉 =

|SATI∪J ∩ SAT
Cf

I
∩ SATCg

J
|

|SATI∪J |

where SAT
Cf

I
is the subset of xI that satisfies the clause Cf

I . It follows that Equation 4 is satisfied

because for any Cf
I , Cg

J , Cf ′
I′ , C

g′
J ′ where I ∪ J = I ′ ∪ J ′ and (f · g) = (f ′ · g′), SAT

Cf
I
∩ SATCg

J
=

SAT
Cf ′

I′
∩ SAT

Cg′
J′

.

〈v
Cf

I
, vCg

J
〉 = 〈

∑

xI∈Cf
I

vxI ,
∑

xJ∈Cg
J

vxJ 〉 =
∑

xI∈Cf
I

∑

xJ∈Cg
J

〈vxI , vxJ 〉 =
|SATI∪J ∩ SAT

Cf
I
∩ SAT

Cf
I
|

|SATI∪J |

The last equality follows from Claim 16.

Finally, Equation 5, which states that ∀Cf
I v

Cf
I

=
∑

xI∈Cf
I

vxI is satisfied by construction.

¤

4 Extensions

We now mention the corollaries of Theorem 12 and its proof.

Corollary 17 For every ε, there exists some constants α ≥ 0, such that the αn level of Lasserre,
an integrality gap of 7

6 − ε for VertexCover persists.
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The idea of the proof is to rewrite a 3-XOR formula ϕ as a vertex cover problem on a graph Gϕ

using the standard FGLSS reduction. We will do it in such a way that any vectors that satisfy the
Lasserre relaxation for the 3-XOR instance ϕ will also satisfy the vertex cover Lasserre relaxation
for Gϕ.

To prove this corollary, we use the following lemma which states that for a certain type of trans-
formations most of the Lasserre constraints continue to be satisfied:

Lemma 18 Let 〈x,Cf
I,M〉 and 〈x̄, C̄f̄

Ī
, M̄〉 be two constraint maximization or minimization prob-

lems. Let g be a map from constraints on x = {0, 1}n to constraints on x̄ such that

1) For each i ∈ [n], g(i) = C̄ f̄
Ī
, where C̄ f̄

Ī
is some constraint over x̄.

2) For xI ∈ xI , g(xI) = ∧i∈I,xi=1g(i) ∧i∈I,xi=0 ¬g(i).

3) For each Cf
I , g(Cf

I ) = ∨
xI∈Cf

I
g(xI).

Let k = max |Ī| : g(i) = C̄ f̄
Ī
. Then if a collection of vectors {v̄

C̄ f̄

Ī

}
C̄ f̄

Ī

satisfy the Lasserre constraints

after r rounds for 〈x̄, C̄f̄
Ī
, M̄〉, then the collection of vectors {v

Cf
I
}

Cf
I

where v
Cf

I
≡ v̄

g(Cf
I )

satisfy
Equations 2, 4, and 5 for br/kc rounds of Lasserre.

Proof: That we only run for br/kc rounds of Lasserre makes all the vectors well-defined. Each
constraint for which we define a vector depends on at most br/kc, and so the corresponding vector
depends on at most r variables.

We first show Equation 2, that ∀I ⊆ [n], ||vC∗I ||2 = 1 is satisfied. ||vC∗I ||2 = ||v̄g(C∗I )||2 = ||v̄∨xI∈xI
g(xI)||2.

Let x̄Ī be the domain of g(xI). Then ∨xI∈xI g(xI) = C̄ ∗̄
I

because g(xI) = ∧i∈I,xi=1g(i)∧i∈I,xi=0¬g(i)
and so every x̄ ∈ x̄ satisfies exactly one of these g(xI). It follows that ||v̄∨xI∈xI

g(xI)||2 = ||v̄C̄∗̄
I
||2 = 1

because the vectors {v̄
C̄ f̄

Ī

}
C̄ f̄

Ī

satisfy the Lasserre constraints.

Equation 5 is satisfied by construction.

Finally, Equation 4 is satisfied. We show that ∀Cf
I , Cg

J , Cf ′
I′ , C

g′
J ′ where I∪J = I ′∪J ′ and (Cf

I ·Cg
J) ≡

(Cf ′
I′ · Cg′

J ′) we have that
〈v

Cf
I
, vCg

J
〉 =

∑

xI∪J∈Cf
I ·Cg

J

||v̄g(xI∪J )||2

This is sufficient because the right hand side will be the same for 〈v
Cf ′

I′
, v

Cg′
J′
〉.

〈v
Cf

I
, vCg

J
〉 =

∑

xI∈Cf
I

∑

xJ∈Cg
J

〈vxI , vxJ 〉 =
∑

xI∈Cf
I

∑

xJ∈Cg
J

〈v̄g(xI), v̄g(xJ )〉

=
∑

xI∈Cf
I

∑

xJ∈Cg
J

〈v̄∧i∈I,xi=1g(i)∧i∈I,xi=0¬g(i), v̄∧j∈J,xj=1g(j)∧j∈J,xj=0¬g(j)〉

Now if xI and xJ do not agree on the overlap, then the term is 0. For if they are inconsistent,
then one vector will require that g(i) holds, and the other that it does not hold, and thus the dot
product will be 0. So we can assume that they do agree on the overlap. But then we are simply
summing over assignments to xI∪J that satisfy Cf

I · Cg
J . And thus the above can be rewritten as

∑

xI∪J∈Cf
I ·Cg

J

||v̄∧i∈I∪J,xi=1g(i)∧i∈I∪J,xi=0g(i)||2 =
∑

xI∪J∈Cf
I ·Cg

J

||v̄g(xI∪J )||2

12



¤

We now prove Corollary 17

Proof: [Corollary 17] Given a 3XOR instance ϕ with ∆n = m equation, we define the FGLSS
graph Gϕ of ϕ as follows: Gϕ has 4m vertices, one for each equation of ϕ and for each assignment
to the three variables that satisfies the equation. We think of each vertex i as being labeled by a
partial assignment to three variables L(i). Two vertices i and j are connected if and only if L(i)
and L(j) are inconsistent. For example, for each equation, the four vertices corresponding to that
equation form a clique. It is easy to see that opt(ϕ) is precisely the size of the largest independent
set of Gϕ because there is a bijection between maximal independent sets and assignment to the n
variables. Note that, in particular, the independent set size of Gϕ is at most N/4, where N = 4m
is the number of vertices. Thus the smallest vertex cover of Gϕ is 3N/4 (because the complement
of any independent set is a vertex cover).

Now the constraints for the Lasserre hierarchy for VertexCover on this graph Gϕ, are defined
over the vertices of this graph. Formally, let x = {0, 1}V (Gϕ). Let Cf

I contain the constraint C
xi∨xj

{i,j}
for each edge (i, j) ∈ E(Gϕ), so that the constraint is satisfied if and only if at least one of the
vertices incident to the edge is in the cover. Let M =

∑
i∈V (Gϕ) xi. Then VertexCover is the

2-constraint minimization problem 〈x,Cf
I,M〉. We can convert it into a Lasserre instance using

Definition 5.

However, each vertex is really just an assignment to 3 variables of the 3XOR instance. Intuitively,
there is a natural map from constraints on the instance of Gϕ to constraints on ϕ. Using this
intuition, we will solve the instance of ϕ using the vectors of Theorem 12, define each vector in the
instance of Gϕ to be identical to the vector assigned to the negation of the analogous constraint of
ϕ, and then show the all the Lasserre constraints are satisfied. For vertex i define g(i) = ¬L(i) to
be the negation of the constraint implied by the label of vertex i. Now extend g as in Lemma 18.
By Lemma 18 Equations 2, 4, and 5 for Ω(n) rounds of Lasserre.

We still must show that Equation 3 is satisfied. We must show that for each edge (i, j) ∈ E(Gϕ)
that ||vi,j ||2 + ||vi,¬j ||2 + ||v¬i,j ||2 = 1. By Claim 7 we can simply show that ||v¬i,¬j ||2 = 0. Let
(i, j) ∈ E(Gϕ), then

||v¬i,¬j ||2 = ||v̄¬g(i),¬g(j)||2 = ||v̄L(i),L(j)||2 = 0

The first equality follows from Equation 4. The last equality is true because L(i) and L(j) contradict
each other. We know this because i and j are joined by an edge.

Knowing that the Lasserre constraints are satisfied, we compute the objective function
∑

i∈V (Gϕ) ||vi||2.
Four distinct vertices were created for each of the N clauses. We show that the sum of the ||vi||2
over the four vertices in any clause is always 3. Let Cf

I ∈ ϕ be such a clause, let ij : 1 ≤ j ≤ 4
be the four vertices corresponding to Cf

I , and let L(ij) be the label corresponding to vertex ij .
Then

∑4
j=1 v̄L(i) = v0 by Claim 6 and the fact that the vector corresponding to an unsatisfying

assignment is ~0. And so

4∑

j=1

||vij ||2 =
4∑

j=1

||v̄¬L(ij)||2 = 3
4∑

j=1

||v̄L(ij)||2 = 3

However, at most (1/2 + ε)n of the clauses of ϕ can be satisfied, and so Gϕ has an independent set
of at most (1

8 + ε)N , and by taking the complement a vertex cover of size at most 7
8 − ε. We get

the integrality gap of (7
8 + ε)N/(3N/4) = 7

6 − ε ¤
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Corollary 19 There exists some constants α ≥ 0, such at the αn level of Lasserre, an integrality
gap of any constant persists for 3-UniformHypergraphIndependentSet.

We will use the following well known proposition which is proved in the appendix for completeness:

Proposition 20 For every k ≥ 3, ε > 0, there exists δ > 0, such that if H is a random k-uniform
hypergraph with ∆n edges, where ∆ ≥ δ, then with probability 1− o(1), H has no independent set
of size εn, and, equivalently, H has no vertex cover of size (1− ε)n.

Proof: Let ε = 1
2c and let ∆ be such that (1− ε)∆ ≤ ε

e . Let H be a random uniform hypergraph
with ∆n edges. By proposition 20 we know that with high probability H has no independent set
of size εn. We now must show that there exists a good solution to the Lasserre relaxation.

We note that the CSP instance is 〈x,Cf
I,M〉 where x = {0, 1}V (H), M =

∑
i∈V xi, and for each edge

(v1, . . . , vk) ∈ E(H) we add the constraint ∨k
i=1¬xi to Cf

I which we can transform into a Lasserre
relaxation according to Definition 5. Note that any constraint of the form ∨k

i=1¬xi is implied by
either ⊕k

i=1xi = 1 if k is even or ⊕k
i=1xi = 0 if k is odd. Consider then the k-XOR formula ϕH with

∆n clauses which implies Cf
I. We see that by Theorem 11 that ϕ cannot be disproved by width

Ω(n) resolution and no single variable can be fixed. Even though the k-XOR clauses are not truly
random because the constants are all the same, the theorem still applies. By Theorem 12 ϕ cannot
be disproved by Ω(n) levels of Lasserre. Moreover by Remark 1 we have that ||vi||2 = 1/2 for all i.
Thus M =

∑ ||vi||2 = n/2.

So the ratio of the Lasserre optimum to the actual optimum is n/2
εn = c. ¤

Corollary 21 There exists some constants α ≥ 0, such at the αn level of Lasserre, an integrality
gap of 2 persists for 3-UniformHypergraphVertexCover.

The proof of Corollary 19 is very similar to that of Corollary 21

Proof: Let ε = 1
2c and let ∆ be such that (1− ε)∆ ≤ ε

e . Let H be a random uniform hypergraph
with ∆n edges. By proposition 20 we know that with high probability H has no vertex cover of
size (1− ε)n. We now must show that there exists a good solution to the Lasserre relaxation.

We note that the CSP instance is 〈x,Cf
I,M〉 where x = {0, 1}V (H), M =

∑
i∈V xi, and for each edge

(v1, . . . , vk) ∈ E(H) we add the constraint ∨k
i=1xi to Cf

I which we can transform into a Lasserre
relaxation according to Definition 5. Note that any constraint of the form ∨k

i=1xi is implied by
⊕k

i=1xi = 1. Consider then the k-XOR formula ϕH with ∆n clauses which implies Cf
I. We see that

by Theorem 11 that ϕ cannot be disproved by width Ω(n) resolution and no single variable can
be fixed. Even though the k-XOR clauses are not truly random because the constants are all the
same, the theorem still applies. By Theorem 12 ϕ cannot be disproved by Ω(n) levels of Lasserre.
Moreover by Remark 1 we have that ||vi||2 = 1/2 for all i. Thus M =

∑ ||vi||2 = n/2.

So the ratio of the actual optimum to the Lasserre optimum is (1−ε)n
n/2 = 1−ε

2 . ¤
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6 Conclusion

We have shown the first known integrality gaps for Lasserre. On the one hand you can see the
main theorem (Theorem 12) as showing gaps for problems that are already known or thought to be
NP-hard. We say that a predicate A is approximation resistant if, given a constraint satisfaction
problem over A predicates, it is NP-hard to approximate the fraction of such predicates which can
be simultaneously satisfied better than the trivial algorithm which randomly guesses an assignment
and returns the fraction of predicates it satisfies. In [Zwi98], Zwick shows that the only 3-CPSs
which are approximation resistant are exactly those which are implied by parity or its negation.
So, for k = 3, the main theorem applies exactly to those problems which we already know are
NP-hard.

On the other hand, the main theorem applies to results that are known to be in P. Deciding if a
k-XOR formula is satisfiable is equivalent to solving a set of linear equations over F2, which can be
done with Gaussian elimination.
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7 Appendix

Proposition 22 For any δ > 0, with probability 1− o(1), if ϕ is a random k-CSP chosen from the
distribution D with ∆n clauses where ∆ ≥ ln 2

2δ2 + 1, at most a r(D) + δ fraction of the clauses of ϕ
can be simultaneously satisfied.

Proof: Fix an assignment to n variables. Now if we choose, m = ∆n clauses at random, the
probability that more than a r(D) + δ fraction of them are satisfied is at most exp(−2δ2m) =
exp(−2δ2∆n). To get this, we use the Chernoff Bound that says

Pr[X ≥ E[X] + λ] ≤ exp(−2λ2/m)

where X is the number of satisfied clauses, E[X] = r(D)m, λ = δm. Picking a random formula and
random assignment, the probability that more than a r(D) + δ fraction of the clauses are satisfied
is exp(−2δ2∆n). Taking a union bound over all assignments, we get

Pr[any assignment satisfies ≥ (1/2 + δ)m clauses] ≤ exp(−2δ2∆n) · 2n

= exp(n(ln 2− 2δ2∆) = exp(−2δ2n)

because ∆ ≥ ln 2
2δ2 + 1. ¤

Theorem 23 For k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2−1, if ϕ is a random k-XOR formula with
density dnε, then with probability 1 − o(1) ϕ cannot be disproved by width αn

1− ε
k/2−γ−1 resolution

nor can any variable be resolved to true or false. Furthermore, this is true even if the parity sign
(whether the predicate is parity or its negation) of each clause is adversatively chosen.

We use the following Proposition:

Proposition 24 For any k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2 − 1, there exists β > 0 such that
if ϕ is a random k-XOR formula with density dnε then with probability 1− o(1):

1. Every subformula ϕ′ ⊆ ϕ where |ϕ′| ≤ βn
1− ε

k/2−1 is satisfiable even after fixing one variable.

2. For every subformula ϕ′ ⊆ ϕ where |ϕ′| ∈ [13βn
1− ε

k/2−γ−1 , 2
3βn

1− ε
k/2−γ−1 ], we have that 2V (ϕ′)−

k|ϕ′| ≥ 2γ|ϕ′| where V (ϕ′) is the number of variables in ϕ′.

Proof:[Theorem 23] Let ϕ be a random XOR formula as in the theorem statement and let C be
any clause over the variables of ϕ. We define µ(C) to be the smallest size of a subformula ϕ′ ⊆ ϕ
such that we can start from ϕ′ and imply C using resolution. We note that in any resolution tree,
if C1 and C2 together imply C3, then µ(C1) + µ(C2) ≥ µ(C3).

From the first part of Proposition 24 we know that with high probability µ(0 = 1) ≥ βn
1− ε

k/2−1 .

Now consider a resolution tree that derives 0 = 1, that is, a contradiction. We will show that this
tree must contain a clause C with many variables. By the subadditivity of µ as we move up the res-
olution tree, this tree must contain some clause C such that µ(C) ∈ [13βn

1− ε
k/2−γ−1 , 2

3βn
1− ε

k/2−γ−1 ].

We will now show that with high probability C contains γβ
6 n

1− ε
k/2−γ−1 variables and thus that the

width of the resolution is at least as large. Let ϕ′ be a subformula of size µ(C) which implies C. By

17



the second part of Proposition 24 we know that 2V (ϕ′) − k|ϕ′| ≥ γ|ϕ′|. Each variable of ϕ′ must
appear either in two of the clauses of ϕ′ or in C itself. If a variable appears in one clause, but not
in C; then no matter what the value of the other variables of that clause, the clause could still be
satisfied by flipping this one variable. Therefore this clause can always be satisfied independently
of the rest of ϕ′ and is not required to imply C. This violates minimality of ϕ′. So

|C|+ k

2
|ϕ′| ≥ V (ϕ′) ⇒ |C| ≥ 1

2
(2V (ϕ′)− k|ϕ′|) ≥ γ|ϕ′| ≥ γβ

3
n

1− ε
k/2−γ−1

so let α = γβ
3 .

To show that you cannot fix one variable to true or false the proof is almost exactly the same.
Instead of showing that µ(0 = 1) is large, we show that for any xi, µ(xi = 0) and µ(xi = 1) are
large. This also follows from the first part of Proposition 24.

We note that we never used the parity of individual clauses in the proof, only the variables contained
in each clause. Therefore the theorem still applies even if the parity of each clause is adversarially
chosen. ¤

Proof:[Proposition 24] First we bound the probability that for a random formula ϕ, there exists
a set of ` clauses containing a total of fewer than c` variables by (O(1) `k−c−1

nk−c−1−ε )`;

We can upper bound the probability that there is a set of ` clauses containing a total of fewer than
c` variables by (

n

c`

)
·
((

c`
k

)

`

)
· l! ·

(
m

`

)
·
(

n

k

)−`

where
(

n
c`

)
is the choice of the variables,

((c`
k )
`

)
is the choice of the ` clauses constructed out of such

variables, `! · (m
`

)
is a choice of where to put such clauses in our ordered sequence of m clauses, and(

n
k

)−` is the probability that such clauses were generated as prescribed.

Using
(
N
K

)
< (eN/K)K , k! < kk, and m = n1+ε we simplify to obtain the upper bound

(
O

(
`k−c−1

nk−c−1−ε

))`
.

We first show that the first part of the proposition is true if we do not fix any variables. If ϕ′ ⊆ ϕ is
a minimal unsatisfiable subformula of ϕ, then each variable that appears in ϕ′ must occur twice in
ϕ′. Otherwise the clause in which that variable appears is always satisfiable and ϕ′ is not a minimal
unsatisfiable subformula. Thus it is sufficient to show that no set of ` clauses contains fewer than
k
2 ` variables. We will show that if we set c = k/2 in the above formula, the sum over ` from 1 to

βn
1− ε

k
2−1 , can be made o(1) with a sufficiently small β.

βn
1− ε

k
2−1∑

`=1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

Let δ be a sufficiently small constant, and let ω(n) be some function that grows in an unbounded
fashion. We break up the above sum into:

δn
1− ε

k
2−1 ω(n)−1∑

`=1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

+
βn

1− ε
k
2−1∑

`=δn
1− ε

k
2−1 ω(n)−1+1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`
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We then bound each of these terms:

δn
(1− ε

k
2−1

)

ω(n)−1∑

`=1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

≤
∞∑

`=1

(
O(1)(δω(n)−1)k−c−1

)`
= o(1)

for sufficiently small δ and sufficiently large n.

βn
1− ε

k
2−1∑

`=δn
1− ε

k
2−1 ω(n)−1+1

(
O

(
`

k
2
−1

n
k
2
−1−ε

))`

≤
∞∑

`=δn
1− ε

k
2−1 ω(n)−1+1

(
O(1)βk−c−1

)`

≤ βδn
1− ε

k
2−1 ω(n)−1

∞∑

`=1

(
O(1)βk−c−1

)`
= o(1)

for sufficiently small β and sufficiently slowly growing ω(n).

Now we note that small subformulas are satisfiable even if we fix one variable. We can use all the
above machinery, but now require that every set of ` clauses contains k

2 + 1 variables. However,

this change is absorbed into the O constant in
(
O

(
`k−c−1

nk−c−1−ε

))`
because in the above analysis when

changing to
(

n
c`−1

) · ((
c`−1

k )
`

) · l! · (m
`

) · (n
k

)−` we only get an addition factor of c`−1
ne

(
c`

c`−1

)k
the first

factor helps and the second is bounded by 2k which is a constant.

Now we show the second part of the Proposition.

We saw above that we can bound the probability that there exists a subformula of size ` that

fails to satisfy 2V (ϕ′) − k|ϕ′| ≥ 2γ|ϕ′| by
(

O

(
`

k
2−γ−1

n
k
2−γ−1−ε

))`

. We will fix β later, and now use

a union bound to upper bound the probability that there exists a clause ϕ′ such that |ϕ′| ∈
[13βn

1− ε
k/2−γ−1 , 2

3βn
1− ε

k/2−γ−1 ] and |V (ϕ′)| ≤ (k
2 + γ)|ϕ′|.

1
3
βn

1− ε
k/2−γ−1∑

`= 1
3
βn

1− ε
k/2−γ−1

(
O

(
`

k
2
−γ−1

n
k
2
−γ−1−ε

))`

≤
(

1
3
βn

1− ε
k/2−γ−1

)

O




(
2
3βn

1− ε
k/2−γ−1

) k
2
−γ−1

n
k
2
−γ−1−ε







(
1
3
βn

1− ε
k/2−γ−1

)

≤
(

1
3
βn

1− ε
k/2−γ−1

)(
O(

2
3
β)k/2−γ−1

)(
1
3
βn

1− ε
k/2−γ−1

)

≤
(

1
3
βn

1− ε
k/2−γ−1

)
(
1
2
)

(
1
3
βn

1− ε
k/2−γ−1

)

= o(1)

for a sufficiently small choice of β

¤
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Proposition 25 For every k ≥ 3, ε > 0, there exists δ > 0, such that if H is a random k-uniform
hypergraph with ∆n edges, where ∆ ≥ δ, then with probability 1− o(1), H has no independent set
of size εn, and, equivalently, H has no vertex cover of size (1− ε)n.

Proof:

Let δ be such that (1− ε)δ < ε
e . Then the probability that H has an independent set of size εn (or

has a vertex cover of size (1− ε)n) is bounded by the probability that there is a set of size εn such
that no edge contains only vertices from this set:

(
n

εn

)
(1− ε)∆n ≤

(e

ε

)εn
(1− ε)δn ≤

(e

ε

)εn (ε

e

)n
=

(ε

e

)(1−ε)n
= o(1)

¤
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