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ABSTRACT

In this paper we provide evidence that digital social networks
look fundamentally different from social networks. We show
that online social networks look like a contagion spread over
traditional models for social networks. Thus, if these tradi-
tional models are correct, then digital social networks and
social networks differ in key properties, and we will need
different models to describe each. This also indicates that
using data from digital social networks may mislead us if we
try to use it to directly infer the structure of social networks.
Additionally, we describe a framework that we call “poten-
tial networks” that may help to use information from digital
networks to infer the structure of social networks. Poten-
tial networks is a two phase model of social networks. The
first phase is the “potential” network. However, this network
may not be directly observed and might not even exist an
any normal manner. A random process is run over a po-
tential network to produce a behavioral network, the second
phase, which can be observed. We then discuss applications
of this two-phase framework.
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1. INTRODUCTION

The advent of Web 2.0 has tremendously enriched researchers’
access to data. Instead of observing eighteen monks for
months waiting for something interesting to happen [23],
researchers now have access to approximately 160 millions
users’ 90 million daily tweets through Twitter’s API [1].
While looking at the data clearly tells us a lot about what
people do online, it is less clear how much this data tells
us about people. Social science researchers developed social
networks as a methodological tool for understanding social
phenomena, such as how individuals’ actions affect macro-
level features of society, or how an individual’s “location” in
a network affects his/her opportunities. Social networks are
not to be conflated with online social networks such as Live-
Journal, Epinions, MySpace, Facebook, and Twitter. We
will use the term digital networks to include online social
networks as well as other digitally recorded networks, e.g.
citation networks, communications networks, collaboration
networks, web graphs, co-authorship networks, product co-
purchasing networks. Digital networks provide a means for
studying social questions pertaining to social networks by
providing a lot of data. However, it is difficult to know how
close this data generalizes past the digital world. To make
full use of this data to make assertions about social ques-
tions, we need to know that it does generalize, at least in
the cases that we care about.

Sociologists have long distinguished between different types
of networks. Omne example is trust networks: from whom
would you feel comfortable asking for $1000? Another ex-
ample is self-declared, or articulated, networks: who do you
want the world to believe are your friends? While differences
such as these are sometimes ignored in the greater social net-
working community, many researchers still hold on to their
importance as indicated by a familiar question, “who in the
room is friends with his/her mother on Facebook?” However,
even if no one were Facebook friends with his/her mother
would this really affect any large-scale measurements of the
data? Does the shear scale of such data render differences
between the digital social networks and social networks to
be mere annoyances or do these differences present a sub-
stantial obstacle to using data from digital social networks
to make inferences about social networks. This is a question
that this paper hopes to address.

To put it another way: Is analyzing digital social networks
tantamount to holding up a big mirror to our society, or
is more like looking at our society in a fun-house mirror—



where things may appear much different than they are—you
may only see feet and a head? And if digital social network
data is akin to looking in a fun-house mirror, then what
aspects of reality can we still reliably deduce from looking
at this data?

There is a long line of work that seeks to study network
generation models (for examples see [8, 4, 27, 3, 18, 17]).
Such studies often observe a property in many different net-
works and show that the current models fail to exhibit this
property. They then propose a new model that does exhibit
this property. This work is implicitly based on the assump-
tion that all networks share certain common properties, and
thus can be accurately modeled by some random generative
graph model. Indeed there are universal properties that span
a large array of sample networks including local clustering
with short average distances [25] and long tail degree dis-
tribution [3]. However, we should not a priori expect all
properties to be universal, and thus we should not expect
one generative model. One of the original motivations for
sociologists to develop social network theory was to explain
how these networks differ and the implications of these dif-
ferences. For example Gans [9] studied how Boston’s West
End community was unable form a coalition to fight a “reor-
ganization” measure that ended up destroying the commu-
nity, even though other seemingly similar communities were
able to organize against and defeat such measures [12].

In this paper we provide evidence that digital networks look
fundamentally different from social networks. Recent work
has shown that digital networks contain properties not present
in many traditional generative graph models [17, 18]. On the
one hand, if these traditional models are correct, then digital
networks and social networks differ in key properties, and we
may need different models to describe each. On the other
hand, traditional models could just be flawed with respect
to these properties and need to be remedied. We provide ev-
idence of the former. We create a model of digital networks
being created similarly to a contagion spreading over a ex-
isting social network. This model is simple and natural and
allows us to use a traditional generative model (the Watts-
Strogatz model) and yet produce digital networks that con-
tain properties observed in a digital network that are not
contained in the staring model. If indeed social networks
and digital networks are different, this indicates that using
data from digital social networks may mislead us if we try to
directly use it to understand how networks form. It further
raises methodological questions about mining large data sets
for properties to directly attribute to social network models,
and then coming up with models that have these properties.
(However, it does allow for the mining of large data sets for
properties to directly attribute to digital network models.)

Additionally, we describe a framework that we call “poten-
tial networks” that may help to use information from digital
networks to infer the structure of social networks. Potential
networks is a two phase model of social networks. The first
phase is the “potential” network. This network may not be
directly observed or even exist an any normal manner. The
second phase is the “behavioral” network, which is observ-
able. However, the behavior network is realized by running
some random process over the potential network to produce
the behavioral network.

We will expand on the definition of a potential networks
later in the paper, but here we define them in a simple, re-
stricted manner (which we later call the static model). Let
UG denote the set of undirected graphs. Then a Poten-
tial/Behavioral Network denoted PBN(G, D) is a simply
an undirected graph G = (V,E) € UG and a dynamics
D : UG — UG which is a possibly randomized function
from the set of undirected graphs to itself in such a way
that D(G) is an subgraph of G. The idea is that G is a list
of “potential” nodes and “potential” edges and D(G) is a list
of “observed nodes” and “observed” edges.

Road Map. In Sectionfef’Contagious Communities’ we ar-
gue that digital networks can be naturally modeled by spread-
ing a virus over a typical social network model. We run
simulated test of these models and claim that the results
both fit intuitions and empirical data about social and dig-
ital networks. In Section 2.3 we draw implications of this
model. In section 3 we construct a framework to indirectly
infer social networks using data from digital network. We
show how many of the past results and some open problems
fit into this framework. In Section 3.3 we briefly discuss ad-
ditional related work. Finally, we conclude with a summary
of main points in Section 4.

2. CONTAGIOUS COMMUNITIES

In this section we will illustrate a case where the “behav-
ioral” network exhibits very different large-scale character-
istics than the “potential” network. In this example, the
potential network is the extant social network, and the be-
havlioral network is an online social network (e.g. LiveJour-
nal®).

Data mining has shown that digital social networks all share
a few common features: Power-law degree distributions, shrink-
ing diameters, and a particular “network community pro-
file plot”. We show, with computer simulations, that even
though the Watts-Strogatz model has none of these proper-
ties, if we use it as a potential network and spread a conta-
gion in a natural way that the resulting network has all of
these properties.

Power-Law degree distributions. Previous research has
shown that many of the degree distributions are power-law
distributions[3]. This means that when the degree distri-
bution is a straight line when plotted with both axes loga-
rithmically scaled. Often this serves as a contrast to Poisson
distributions, which are much more highly concentrated and
have a much thinner tail (fewer points far from the average).

We use the term power-law in a very loose sense: by power
law, we will mean that the log-log plot of the degree dis-
tribution of the nodes of the graph appears roughly linear,
nothing more. While this is not the true meaning of the
term, it does capture the operation definition of the term in
many other papers and so we use it as well (see discussion
on page 60 of [13]). Those uncomfortable with this use can

'LiveJournal is an early blogging and social networking com-
munity. We will use it as a running example for a digital
social network.



substitute the term skewed distribution instead of power law
distribution.

Shrinking Diameters. Previous research has also shown
that, over time, the diameter of digital networks tends to
shrink [18]. This work was based on analyzing four networks:
the ArXiv citation graphs (for high-energy physics theory),
the U.S. Patent citation graph, the graph of routers of the
Internet, and the ArXiv affiliation graph (on certain topics).
Note, however, that none of these is actually a digital social
network.

Network Community Profile. Another network feature that
we are interested in is called the network community profile
and was described in the paper “Statistical Properties of
Community Structure in Large Social and Information Net-
works” by Leskovec, Lang, Dasgupta, and Mahoney [20]. In
this paper, the authors develop a new way to analyze a net-
work that they call the “network community profile”-which
we will describe shortly. They then show that this tool looks
similar on over 70 real data sets that they have access to,
such as LiveJournal. In particular, the network community
profile plot on the social networks: LiveJournal, Epinions,
LinkedIn, Del.icio.us, and Flickr look nearly identical (see
[20] pages 22 and 25). They note that the plot decreases
until around 100, then it stays roughly even for a short pe-
riod, and finally starts to increase. Finally, they show that
this tool looks completely different on virtually all genera-
tive models (except for one that they call the Forest-Fire
model). This is pretty shocking.

Leskovec et al were interested in studying the community
structure on networks. They define a community as a set of
nodes with low conductance (i.e with many edges within the
set compared to the number of edges leaving the set). Even
in very large datasets of digital networks, they found few
large communities (over 100 people) that fit this definition.
Broadly speaking, they found that the structure of these
graphs was composed of “whiskers” and a “core”. Whiskers
are a set of nodes connected to the rest of the graph by only a
one or a few edges. The core was a big connected mess with
no subsets of small conductance. The “community” structure
that they detected (sets with low conductance) could be
almost entirely attributed to collections of whiskers—groups
just barely connected to the rest of the graph.

However, despite this result, we will show that this does not
mean that we need to throw away all our models just yet.
It may be that these over 70 data sets all have attributes
of digital networks which are not shared by social networks.
Thus it could be that the generative models do well simulat-
ing social networks, but poorly simulating digital networks.
On the positive side, this would mean that not all our pre-
vious models are useless. On the negative side, it may be
impossible to find a perfect generative model because digital
networks look different than social networks.

The intuition behind our model is that digital networks (e.g.
LiveJournal) spread over extant social networks, so that peo-
ple join an online social network because one or more of their
friends already participate in that social network. Thus to

model online social networks, we should start with a model
of a social network and then model a process of individuals
joining the online network.

We simulate exactly this. We start by creating a potential
network using a simple generative model-the Watts-Strogatz
model, which does not exhibit community network profiles
that match the 72 data sets as a potential network. We then
generate a behavioral network based on spreading a contact
process on this potential network and look at the resulting
subgraph of infected nodes. We show that this does exhibit
the matching community network profile. Again, the obser-
vation that this behavioral model is based on is that people
join networks because their friends are on them. Intuitively,
this is true across is large family of networks: from joining
LiveJournal to authoring an astrophysics publication net-
works, from acting in a movie to using Twitter.

2.1 The Model

Watts-Strogatz model. The Watts-Strogatz random net-
work model is define by three parameters. The undirected
WS(n,d,r) ensemble of random graphs—where n is the num-
ber of vertices, d is the average degree, and r € [0,1] is
a parameter—is defined by the random process that creates

them. This process begins with the graph on n nodes {0, 1,. ..

1} where each node is connected to the d closest other nodes
so that £ = {(k,k £¢) : 1 < ¢ < d/2}. Each edge (u,v) is
then "rewired” with probability r, that is replaced with the
edge (u,v") where v is chosen from the vertices not already
connected to u.>

Model of Transmission. In this section we first define two
simple models of transmission.

The first we call random edge transmission induced graph
which has one parameter. RATIG¢(m) is defined by start-
ing with the graph G = (Vg, E¢) and initiating the infected
set I to a singular random vertex. A random edge (u,v) is
chosen uniformly from E(I,I) and the vertex v is added to
I. This is repeated until |I| = m. The resulting infected
graph is G(I), the induced subgraph of G on the vertices in
I.

The first model includes all the edges in G between ver-
tices that are in I. In the second model, these edges must
also be discovered. We call the second model random edge
transmission, and it has three parameters. RETg(m, o, )
is defined by initiating the infected graph H = (Vu, Ex) to
the graph ({vo},0) where vy is a random vertex from the
potential graph G = (Vg,Eg). At each step, each edge
(u,v) € E¢(Vu,Vu) — En is added to H with probability
« and each edge (u,v) € Eg(Vu, Vi) is added to H (along
with v) with probability 8. The process is run until m ad-
ditional vertices are included.

Note that (G, RETIGg(m)) and (G, RETg(m,«,3)) are
Potential /Behavioral Networks.

2Tt is a little more complicated than this because the order
which you consider the edges may matter, see [27] for the
details of ordering.
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We create a more complex model which allows people in
“infected” communities to make new friends.

The random edge transmission with exploration which has
four parameters: RETW Eg(m,a, 3,7) is defined exactly
like the random edge transmission induced graph except that
at each round, for each triple u, w,v € Vg where (u, w), (w, v)
Epy the edge (u,v) is added to Ex with probability « (this
edge is added with probability « for each such triple).

Note that as we defined potential networks above, this is not
a potential network, but it will turn out to be a dynamic
potential network.

Network Community Profile Plot. The network commu-
nity profile plot[19] is based upon the idea of the conduc-
tance. The conductance of a set S CV

E(S,S)

®(8) = min{degree(S), degree(S)}

is equal to the number of edges leaving a set S divided by
the sum of the degree of the vertices in S (or S, whichever
is smaller). Thus, if S is insular and does not have many
edges leaving it relative to its total degree, then S has low
conductance. The community network profile finds the set
of each size s : 1 < s < |V|/2 with the lowest conductance
and then plots this graph. Le fg(z) = ming, gj—, ®(95).

2.2 Simulation Results

In this section we describe the results of our simulations. All
simulations were done using the SNAP System [16]. This is
particularly important for the network community profile
plots which, because the it is NP-complete to computer ex-
actly, is approximated with with heuristics. These heuristics
were shown to work well in other graphs (see Section 5 of
Leskovec et al [20]), but that is no guarantee that they work
well here.

We first explain what happens when we use the Watts-
Strogatz model as a potential graph. We study three prop-
erties of the network: degree distribution, diameter, and
network community profile.
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Figure 2: A plot of the diameter and effec-
tive diameter as a RET contagion was spread on
WS (10000, 100, .1) with « = .6, and 8 = 0.01

Degree Distribution. Interestingly, even though the de-
gree distribution of the Watts-Strogratz model is extremely
concentrated, we found that the resulting graphs from RET
had a degree distribution that resembled a power-law dis-
tribution. In particular, we found that if took the resulting
graph from RETw s(10000,100,.1) (1000, .6, .01) that the degree
distribution appeared to be a power-law distribution®. Re-
call the WS(n,d,r) is the Watts-Strogatz model of graphs
with n nodes, average degree d, and rewiring probability r,
and that RETg(m, «, 8) is the contagion model on graph G
where at each round, edge between infected nodes is added
with probability o and each edge from an infected node to
a non-infected node is added with probability 8 until there
are m nodes that are infected.

This is especially surprising since the maximum degree of
the original graph G (and hence the largest possible degree
in H was only a little over 100 in the trials we ran. We
did not expect to find this, and we illustrate the difference
Figure 1 Of course, as the infected graph becomes a large
fraction of the network, we expect this effect to go away. In
fact, the effect seemed to disappear when the infected region
reached 40% of the vertices, and disappeared as soon as 20%
in some trials.

Diameter. We also observed the diameter of the network.
We found the the diameter shrunk in according with the
prediction of Leskovec, Kleinberg, and Faloutsos [18]. We
plot the diameter and effective diameter of one of the runs
in Figure 2.2.

Network Community Profile. We found that if took the
resulting graph from RETw s(10000,100,.1)(1000,.7,.01) that
the network community profile closely matches that of the
online social networks that Leskovec et al studied in [20]. Re-
call the WS(n,d,r) is the Watts-Strogatz model of graphs
with n nodes, average degree d, and rewiring probability r,

3see beginning of this Section for our relaxed definition of a
power law distribution.
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Figure 3: A ncp of WS(1000, 50, .1)

and that RET¢(m, «, ) is the contagion model on graph G
where at each round, edge between infected nodes is added
with probability a and each edge from an infected node to a
non-infected node is added with probability £ until there are
m nodes that are infected. Figure 1 and Figure 2 respec-
tively show both the original network community profile of
the Watts-Strogatz model and the network community pro-
file of a virus spread over the network.

This result was robust to changing the size of the network n
and the degree of the network d. However, if we made r too
large, then the community network profile would look differ-
ent, the plot never decreases sufficiently. A similar pattern
would happen if a were not sufficiently large compared to (3,
the edges between nodes of the infected graph H would fail
to fill in and no community structure would be detected.

Finally, as the size of the infected graph H approached the
entire graph G, then the community network profile of the
infected graph H would look increasingly like the commu-
nity network profile of G. This is because eventually H will
become G.

Other Graph Generation Models. When we run this pro-
cess on various graph generation models including Erdos

Renyi random graphs [8], Preferential Attachment networks [3],

or complete graphs we did not see this behavior. We hy-
pothesized that, in the Erdos Renyi random graphs and the
Preferential Attachment model, this is because there very
little clustering to begin with, and the virus spread evenly
over the graph in a tree like fashion and remained unclus-
tered. Such behavior might not continue if nodes “met”
other infected nodes by virtue of being infected and having
a common neighbor. To test this hypothesis we embellish
the dynamics to artificially add community structure using
RETWE as a model of spreading. We find that while the
network community plot looks more like the typical plot, it
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Figure 4: A ncp of RET run on WS(10000, 50, .1)
with a = .7, 8 = 0.01, and m = 1000

still does not look like the sought after behavior.

The fixing of parameters are robust. We emphasize that the
results here are not cherry picked; we reported everything
we tried that did not work, as well as that which did. It
should also be pointed out that the Watts-Strogatz model is
simply the first model that we tried this on which worked.
We do not claim that it is the only model over which these
results of contagious communities will hold.

Forest Fire Model as a Contagious Community. Leskovec
et al found that the Forest Fire Model was the one model
they tested that did replicate the results of the community
network profile that they found on the 72 data sets. We note
that the Forest Fire Model can actually be reinterpreted as
a potential behavioral network model.

The complete Forest Fire model can be found on page 9 of
Leskovec, Kleinberg, and Faloutsos [18]. For our purposes, it
will suffice to present a slightly simplified undirected version.
Our Forest Fire model has one parameters p, the burning
probability. The model starts with a single node. At each
time step a new node v joins and chooses an existing node u
at random and forms a link with w. For each node w that v
links to (starting with u), v also links to k. of w’s neighbors
where k., is chosen from a binomial distribution with mean
(1 —p)~'. This is guaranteed to terminate because v is not
allowed to link to any node more than once.

The Forest Fire model is very close to running RETW E on
a low degree random Erdos-Renyi graph. Consider running
RETW E on a low degree random. When a vertex v joins (if
the graph is not more than a small fraction of the total), then
it is very likely that v is attached to exactly one node u of
the infected subgraph, H, (the one the infected v). Thus the
principal way for v to add more ties in the infected subgraph



H is by exploration on the infected subgraph through ties
of w in H. Each time that v links to a neighbor w of u in
H, the next time step v can add nodes to neighbors of u as
well (v can also add ties by infecting a neighbor in G that is
not yet in H). The difference between these two models is
in the number of neighbors that u finds by exploration. In
the forest fire model it is (1 — p) ' in expectation, and in
the RETW E model it depends on the amount of time the
node has been in the network.

Thus it is not surprising that both of these models produce
similar though not certainly not identical network commu-
nity profile plots.

2.3 Conclusions on Simulations
We think that there are several important lessons from the
above simulations.

Digital and social networks may not look the same:
We show that metrics that appear to test global properties
(e.g network community profile) and metrics that appear
to test local properties (e.g. degree distribution) may show
dramatically different results on digital networks and social
networks. While people have made this observation before,
here we provide results that begin to show the scope and
scale of the qualitative and quantitative differences. More-
over, our two step simulation captures both the intuition and
sociology research about social network models—small diam-
eter [21] and local clustering [25]-and the research on digi-
tal social network—shrinking diameter [18], power law degree
distribution [3], and network community profile plot [17]-all
in one simple and intuitive model. We show that if the in-
tuition that guided the first generative models is correct,
then this discrepancy must exists. It could still be that the
core and whisker model characterizes actual social networks.
However, we feel that contagious communities is a more nat-
ural explanation for the whisker and core structure observed
on digital networks.

This indicates that we may not be able to learn about the
structures of social networks by directly data-mining digital
networks. This is a reality check on some of the work done
which is motivated, in part, by the quest for a universal
generative model.

Digital networks are not as we would commonly be-
lieve them to be: Leskovec et al, already showed us that
digital networks are not as we would commonly believe them
to be. This shows us that this conclusion may not reach to
other social networks. Some doubted the counter-intuitive
results of Leskovec et al. Our experiment supports their
work, but only in the their original scope of digital networks.
Similarly, this provides intuition behind the observations of
Leskovec et al of the odd properties that all the digital net-
works they considered seemed to have.

New generative model for digital social networks:
This intuition also provides us with a new generative model
for digital social networks. Start with a social network model,
and model a contagion spreading over it.

Re-imagine what a community is and what they look
like: Secondly, and more speculatively, this gives us an op-

portunity to re-imagine what a community is and what they
look like. These digital social networks can be seen as a com-
munity within the potential network. That is the nodes of
LiveJournal form the “LiveJournal community” which is em-
bedded in society. The LiveJournal network can be viewed
both as a network in and of itself, but also as a community
in a larger network. We can perhaps use the core/whisker
model of Leskovec et al to understand properties of a com-
munity.

This type of community is much different than the tradi-
tional community that researchers have looked for-namely
a set of nodes with many internal but few external edges.
Such a community is an insular community. The notion
of insular community can be captured by such metrics as
modularity [22], and conductance [19]. However, this model
provides an alternate view of what a community looks like—
communities that are gradually adding internal connections
and external members that start on the periphery of the
group and gradually become more central to the commu-
nity. Communities are composed of a core that has no insu-
lar communities and whiskers.

Digital social networks have boundaries: This view
of digital networks as communities created in a larger so-
cial network also allows us to see that digital networks have
boundaries. Difficulties of boundary definitions often arise
in studying social networks. Researchers much decide on the
exact scope of the community which they are studying. Sub-
tle differences on where exactly boundaries are placed can
affect metrics of the community such as average degree, av-
erage distance, et cetera [11]. While the LiveJournal graph
may seem to be void of this difficulty, it is not. The Live-
Journal community exists in time as well. If you look at the
nodes and edges at a particular moment in time, you may
see the “whiskers” that Leskovec et al observed. However,
these almost disconnected communities may eventually meld
in with the core, but simply have not yet. By only looking
at the edges before a particular time, the network may con-
tain features, such as groups of vertices barely connected to
the main part of the graph, that are not present in a more
holistic view of the network.

Potential Networks: Lastly, these results point toward
the potential network frame-work developed in the remain-
der of the paper. A model were social networks are not
created ex nihilo, but from existing social structures.

3. POTENTIAL NETWORKS

We start by defining a Potential/Behavioral Network Model.
We define two such models, a static model and a dynamic
model. We first define a network, which will be a graph with
additional information on the edges and vertices.

Definition 1. A Network Model N is a pair N' = (Qv, Qr)
where Qy and Qg are each sets. Qv is a set of possible vertex
attributes and Qg is a set of possible edge attributes. A real-
ization of a network model N is a network N = (G, Av, Ag)
where G = (V, E) is an undirected graph, Ay : V — Qy,
and Ag : E — Qg assign attributes to each vertex and edge
of the graph. We will denote by G(N) the undirected graph
associated with the network N.



Undirected graphs, directed graphs, weighted graphs, graphs
with different edge types, graphs where each edge exists only
in certain intervals of time, etc are all network models.

Definition 2. A Static Potential/Behavioral Network Model

is a triple (M, N, D) where M and N are network models,
and D : M — N is a (probabilistic) function from a net-
work M € M, called the potential network, to a network
N € N, call the behavioral network, such that G(D(M)) is
a subgraph of G(M).

A Potential Network for a model (M, N, D) is simply a net-
work M € M

A Dynamic Potential/Behavioral Network Model is a triple
(M, N, D) where M, and N are network models, and D :
M — M x N is a (probabilistic) function from a network
M € M, called the potential network, to a network M’ €
M called the updated potential network, and N € N, call
the behavioral network, such that G(D2(M)) is a subgraph
of G(M), where D2(M) denotes the second component of
D(M). This definition can by applied iteratively over time
so that My = M and (M, N¢) = D(M;—1) producing a sort
of Hidden Markov model.

The static potential /behavioral network model is conceptu-
ally simpler. However, it ignores the fact that current out-
comes can affect the feasibility of future outcomes. In the
dynamic model, the way that the behavioral network is re-
alized at time t can actually change the potential network at
future steps. This models the fact that if two people meet,
they may be more likely to meet up in the future. Addition-
ally, it captures the notion that making ties in the present
can enable the creation of future ties that are not currently
possible.

We observe that many common network generation models
can naturally be seen as potential networks.

We start with defining Erdos-Renyi graphs this way. We first
describe the potential /behavioral network model, which we
call the Basic Model.

Definition 8. The Basic Model is the Potential /Behavioral
Network Model (M, N, D) where M = ({1}, [0, 1]) (weighted
undirected graphs), N = ({1}, {1}) (undirected graphs), the
dynamics D(M) applied to network M = (G, Av, Ag) cre-
ates a graph with the same vertices of M such that each
edge e € G(M) is present with probability Ag(e) (the edge
weight in M).

The Erdos-Renyi graphs then simply running the Basic Model
starting with the potential network (G = (V,V x V), 1,5) so
that G is the complete graph, for each vertex Ay = 1, and
for each edge Ag = p.

In fact, the Basic Model can simulate several additional
models. One is the planted community model. The planted
community model has four parameters (n, k, p, ¢) where k <
n are integers such that k divides n, and p > ¢ € [0,1]. The
graph is the complete graph on n vertices. The vertices are

partitioned evenly amongst the k groups, and the weights
of edge (u,v) is p if v and u are in the same group, and ¢
otherwise.

Another model that can be simulated is the planted clique
model, which has two parameters k and n. The potential
graph is again the complete graph G on n vertices. k special
vertices are randomly chosen to be in the planted clique.
The edge weights are 1 for edges that connect two special
vertices, and are 1/2 for all other edges.

Additionally, the Small World model of Watts and Stro-
gatz [27], the and the navigational small world models of
Kleinberg [15] and Watts et al [26] can be captured by this
a slight variant of the Basic Model.*

Finally, as pointed out in Section 2.2, the Forest Fire Model [18]
can be simulated by RETW E, which is a natural dynamic
potential/behavioral model. Each time a link (u, v) is added
in H, u gains access to all of v’s numbers in H, even if
v does not have access to them in G. This is a dynamic
potential/behavioral network model because the potential
network changes to reflect these new possibilities.

3.1 Using Behavioral Networks to Recover the
Potential Graph

While in Section 2 we showed the we may not be able to
directly recover the potential graph from a behavioral graph,
not all hope is lost. We may be able to recover the potential
network indirectly, or at least to recover properties of the
potential network. This is one of the key motivations of
the definition of Potential/Behavioral networks. Many open
questions can be cast in this way, and we discuss some of
them now.

Even if the graph was not produced using a potential net-
work, the behavioral/potential framework can still be used
to learn about aspects of the graph. For example, in the
planted community model of the previous section, the goal
is to recover the initial communities given the behavioral
graph. Given a graph H on n vertices, if we assume that it
was created by running the planted community model with
parameters n, k, p, ¢ with some fixed k and any 0 < ¢ < p <
1, then finding a maximum likelihood partition of the ver-
tices (in the planted community model) will give a partition
of the graph into k equally sized components that minimized
the number of edges crossing the components. When k = 2
this is the balanced separator problem which is NP-hard to
even approximate [14], so we cannot hope to solve it in the
worst case. However, we can hope to solve it in the average
case and in fact even rather simple heuristics work for the
case of the planted community model. [5].

Some properties that we may want to reconstruct are aver-
age degree, finding high influence nodes, testing for hierar-
chical structure, testing if a network is resilient to failure,
finding communities, finding structure holes and more. The
amount, accuracy, and type of data required for testing each

“The Basic Model simulates G, , random graphs where as
these models are really random graphs with fixed degree,
and so are simulated by a slightly different model that can
condition on particular degrees.



of these properties is likely to differ.

We can also use this model to derive confidence intervals for
graph properties. An overall strategy to recover properties of
the potential graph H is to assume H = D(gr— G) where G is
produced from some generative model R and D is some dy-
namics. In this way we can provide average case solutions
to problems with worst-case hardness. An key application of
this model is when D is some social network sampling proce-
dure. We would then like to know what kind of conclusions
we can safely draw by only assuming a generative model R.
This is similar to linear regressions, where it is assumed that
the data comes from a linear model (R) with error (D) and
the goal is to recover the model by eliminating the error, and
also to provide a confidence of this model. Here we would
like to do the same, but many graph properties are very
non-linear and the sampling error D can be correlated with
the structure G that we are trying to identify. We would
like to know what kinds of error we can tolerate, and what
kinds of error blow up in a non-linear fashion.

Results for this potential/behavioral model could prove use-
ful for social network research methodology because of the
non-linear nature of many graph properties, existing models
often fail to capture the complexities of the setting and using
such models renders the confidence intervals useless [11].

A prerequisite for using such a model is having a good model
for D. In the case of contagious communities D is a lo-
cal property, and so may be easier to estimate than a more
global graph property. In the contagious communities model
it is important to estimate the parameters «, §, and v ap-
propriately, without such estimates it is unclear what can
be learned. It seems like the best way to estimate such pa-
rameters may be to understand what is happening offline
(at least in restricted settings). For example, do users of
LiveJournal meet new people on the site, or simply connect
in new ways with people they already know? While we may
try to infer it from network data, another possibility is to
use studies that involve directly observing people to estimate
reasonable models of dynamics.

3.2 Subtleties

It is sometimes important to distinguish between potential
networks and behavioral networks, but other times this dis-
tinction seems insignificant. An added benefit of carefully
defining this framework is that we can clear up some ambi-
guities.

A case where it is important is in the hidden clique model
defined above. In this model, it is unknown (and conjec-
tured to be hard) to find the large hidden clique in D(m)
even when k = o(y/n) [2]. However, note that the clique is
trivial to find in the potential graph G itself! Additionally,
if the dynamics D change so that the resulting graph is not
the result of one sampling, but the result of 2log(|V]) sam-
plings, then again the problem is easy® Even if the clique
is replaced by a dense subgraph, the problem remains easy
with Q(log(n)) samples (by a standard Chernoff bound)®

®Simply discard all edges that do not appear in every sam-
ple, and with high probability the only remaining edges left
will be those of the clique.

SWith high probability the only edges that will appear in at

This means that if we do not only have data on which edges
are present, but only, say, who talked to whom over the
last year, we can efficiently compute a lot more than with a
sampled graph alone.

A case where distinguishing is not important is in a sim-
ple contact process (e.g. SIR model). The distribution of
graphs where each edge is present with probability p and a
contagion spreads across an edge with probability ¢, is the
same as a model where the graph is complete and each edge
has weight p, and the contagion spreads with probability qw
where w is the weight of the edge.

3.3 Related Work

The Potential /Behavioral Network framework has implicitly
been used in many previous studies. Segal [24] observed that
the best prediction of who would become friends at a cer-
tain police academy was the proximity of their last names
in the alphabet (this was presumably due to the frequent
placement of the cadets in alphabetical order). Thus the
last names produced a certain potential network. In an-
other study, also at a police academy, Conti and Doreian [7]
show that seating assignments and squad assignments heav-
ily predict friendship ties. However, they also showed that
this effect lessened slightly with time. These studies can be
reinterpreted as trying to understand the underlying poten-
tial networks. In the later case, they wanted to manipu-
late these networks to foster inter-racial comradery at the
academy.

In an experimental study, Centola [6] created digital com-
munities populated with volunteers and studied the spread
of joining health forum network over this community. Thus
Centola was studying how the current network influences
individuals to join a website (and thus a new network).
Viewed in the potential /behavioral framework, this is clearly
a contagious community with a strictly enforce potential
network). Centola was mostly concerned with what types
of potential networks would foster the largest contagion.

Additionally, recent work by Gomez-Rodriguez, Leskovec,
and Krause [10] creates a model to try to infer a network of
influence by looking only at the time sequence of an infec-
tious outbreak (e.g. a news item through the blogosphere).
They show via computer simulations that their heuristics for
recovering a potential network, given the timing data from
a series of outbreaks, can simultaneously give high precision
and recall of the original edges.

4. CONCLUSIONS

In this paper we have provided evidence that digital and so-
cial networks differ in foundational properties. We did so by
creating a new network generation model that spreads a con-
tagion across an existing network. We show that empirically,
this model has a realistic network community profile, power
law distributions, and shrinking diameter, yet also conforms
to traditional generative models. Moreover this model al-
lows us to re-imagine what a community is, and what it
looks like on a social network—perhaps more like a core and
whisker model than an insular community. Also this model

least a (p + ¢)/2 fraction of the instances are those of the
clique.



shows that even with an entire digital social network, there
are still boundary problems to contend with.

Finally, we provided a theoretical framework that is broad
enough to accommodate many open question. Our frame-
work shows how certain computationally intractable prob-
lems can become tractable with slight changes in the model.
Also, this framework provides a way of creating new method-
ological tools in social network analysis.
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