
Limitations of Linear and Semidefinite Programs

by

Grant Robert Schoenebeck

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Luca Trevisan, Chair

Christos Papadimitriou

Satish Rao

Sourav Chatterjee

Fall 2010

Limitations of Linear and Semidefinite Programs

Copyright 2010

by

Grant Robert Schoenebeck

1

Abstract

Limitations of Linear and Semidefinite Programs

by

Grant Robert Schoenebeck

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Luca Trevisan, Chair

NP-complete combinatorial optimization problems are important and well-studied, but re-
main largely enigmatic in fundamental ways. While efficiently finding the optimal solution
to such a problem requires that P = NP, we can try to find approximately optimal solutions.
To date, the most promising approach for approximating many combinatorial optimization
problems has been semidefinite programming, a generalization of linear programming. How-
ever semidefinite programs are not as well understood as linear programs. An important
question is whether semidefinite (or linear) programs can be improved to create better
algorithms.

Several processes–Lovász-Schrijver+ (LS+) [22] and the stronger Lasserre hierar-
chy [21] for semidefinite programs, and Lovász-Schrijver (LS) [22], and the stronger Sherali-
Adams hierarchy [27] for linear programs–were create to systematically improve semidefi-
nite and linear programs at the cost of additional runtime. This thesis studies the question:
“What is the tradeoff between the efficiency and the guaranteed approximation in these
hierarchies?” These systems proceed in rounds (and thus are usually referred to as hier-
archies) and all have in common that after n rounds, where n is the number of variables,
they find the optimal solution, and they take time nO(r) to run until the rth round. An
“integrality gap” of α after r rounds for one of these hierarchies proves that the algorithms
generated by the hierarchy cannot find an α approximate solution in time nΩ(r).

Unlike NP-hardness results, these results are unconditional, yet apply only to a
large, but restricted, class of algorithms. However, very low levels of these hierarchies in-
clude some of the most celebrated approximation algorithms for NP-complete problems. For
example, the first level of LS+ (and hence also Lasserre) for the IndependentSet problem im-
plies the Lovász θ-function [23] and for the MaxCut problem gives the Goemans-Williamson
relaxation [17]. The ARV relaxation of the SparsestCut [5] problem is no stronger than the
relaxation given in the second level of LS+ (and hence also Lasserre).

This thesis shows an optimal integrality gap of 2 − ε for Ω(n) rounds the LS
hierarchy relaxation of the VertexCover and MaxCut problems. This result implies that
a very large class of linear programs require exponential time to solve VertexCover (or
MaxCut) to better than a factor of 2, even on random graphs. The previously best known
2 − ε integrality gap for VertexCover [3] only survived Ω(log(n)) round of LS, and the
previously best known 1/2+ε integrality gap for MaxCut [12] survived any constant number
of rounds of SA (and for thus LS). These results were the first to illustrate the stark difference

2

between linear program relaxations and semidefinite program relaxations (because MaxCut
is better approximated after just one round by LS+).

Additionally this thesis shows that even after Ω(n) rounds, the Lasserre hierarchy
cannot refute a random 3XOR formula. This is the first non-trivial integrality gap for the
Lasserre hierarchy, the strongest of all the aforementioned hierarchies. As mentioned above,
this result unconditionally rules out the possibility of a subexponential time algorithm for
random 3-SAT over a large range of semidefinite programs. There are, additionally, many
immediate corollaries such as a similar integrality gap of 7/6 − ε for VertexCover. The
techniques in the thesis remain the only known way of obtaining integrality gaps for Lasserre.

i

To my Mom and Dad

ii

Contents

1 Introduction 1
1.1 VertexCover as an Illustrating and Motivating Example 2
1.2 Other Previous Results . 7
1.3 Results Overview . 8
1.4 Techniques Overview . 8
1.5 Related Areas and Future Directions . 10
1.6 Notation and Definitions . 13

1.6.1 Problems Studied . 13
1.6.2 Definition of Linear and Semidefinite Program Hierarchies 14
1.6.3 Fourier Analysis . 19

2 Linear Round Integrality Gaps for Lovasz-Schrijver 20
2.1 Our Results . 20
2.2 Overview of the Proof . 21
2.3 Distributions of Vertex Covers in Trees . 23
2.4 Distribution of Vertex Covers in Sparse Graphs 26
2.5 The Main Lemma . 27
2.6 Lower bounds for MaxCut . 32
2.A Proof of Lemma 10 . 35
2.B Proofs of claims about splashes . 35

3 Linear Round Integrality Gaps for Lasserre 40
3.1 k-CSPs over XOR-Implied Predicates . 41
3.2 Extensions . 44
3.3 Conclusion . 47
3.A Proofs about Expansion and Resolution Width 48

Bibliography 52

iii

Acknowledgments

I would like to thank my advisor, Luca Trevisan. His generous support through
my years of graduate school has been unfailing. In particular, he introduced me to the
topics discussed in this thesis. I also need to thank Madhur Tulsiani, who explored many
of these ideas with me. (The results in the second chapter are a result of a collaboration
with Luca Trevisan and Madhur Tulsiani).

This endeavor would not have been possible, enjoyable, or even worthwhile without
the loving support I received from family, friends, colleagues, and professors.

Finally, I have been generously supported financially by the National Science Foun-
dation graduate fellowship, and so I would like to thank the government and tax-payers of
America for the gift of these last five years.

1

Chapter 1

Introduction

Perhaps the greatest success story of computational complexity theory is the the-
ory of NP-completeness. This theory partially explains why there is no known (provably)
efficient algorithms for many combinatorial optimization problems. These problems have
been studied extensively because they have so many concrete applications such as rout-
ing, scheduling, machine learning, artificial intelligence, and many more. NP-completeness
shows that while on the surface these problems seem to bear little resemblance to each other,
they are actually, in some sense, all the same. They are the same in that an algorithm to
solve any one of these problems could be efficiently transformed into an algorithm to solve
them all.

The famous P ̸= NP question then asks if there is an efficient algorithm for any
of these problems. If it were shown that P ̸= NP we would know that none of these
problems can be solved exactly on every instance in polynomial time. We might still be
left to wonder if we can solve the problems approximately, or if we could solve them on all
natural instances, or if we could solve them in quasi-polynomial time.

In fact, many of these problems can be efficiently approximated. The approx-
imation algorithms for these problems are often produced in the framework of linear or
semidefinite relaxations. For example, the Lovász θ-function for the IndependentSet prob-
lem [23], the Goemans-Williamson relaxation for the MaxCut problem [17], and the ARV
relaxation of the SparsestCut problem [5]. However, the programs that approximate these
problems are, in a certain concrete sense, very simple programs.

Various methods or cranks (to be described shortly) automatically strengthen
linear or semidefinite programs. Each time the crank is turned, the program becomes tighter
and tighter. These methods are usually discribed as hierarchies where the rth level of the
hierarchy is generated by turning the corresponding crank r times. Lovász-Schrijver (LS)
[22], and the stronger Sherali-Adams hierarchy, [27] are two linear programming hierarchies.
Lovász-Schrijver+ (LS+) [22] and the stronger Lasserre hierarchy [21] are two semidefinite
programming hierarchies. It is additionally known that LS+ is stronger than LS, Lasserre
is stronger than SA, and SA and LS+ are incomparable.

While fundamental differences between these hierarchies exist, they also have a lot
in common. Relaxations in the rth level of a hierarchy require that any set of r of the original
variables be self consistent in a very strong way (how strong depends on the hierarchy). If an

2

integer program has n variables, then the nth level of any hierarchy is sufficient to obtain
a tight relaxation where the only feasible solutions are convex combinations of integral
solutions. Additionally, it is possible to optimize over the set of solutions defined by the
rth level of any hierarchy in time O(nO(r)), which is sub-exponential for r = o(n/ log n).

Therefore, we know that the nth level of these hierarchies produce exact algo-
rithms. For semidefinite programs, the aforementioned algorithms of the Lovász θ-function,
the Goemans-Williamson MaxCut relaxation, and the ARV SparsestCut relaxation all fall
within the first 2 rounds of the weaker LS+ semidefinite program hierarchy. One of the
fundamental questions asked in the thesis is what happens in between. In particular, can
these automatic cranks be used to produce efficient algorithms with better approximation
guarantees than are currently known? Stated another way, do the supped-up programs of
these relaxations outperform the vanilla relaxations? In the cases that we study, we answer
these questions in the negative. Such negative answers are especially interesting because
these hierarchies include most natural linear or semidefinite programs. Thus these results
suggest that either it is hard to approximate these problems, or finding improved algorithms
requires fundamentally new techniques.

It is helpful to compare lower bounds about these hierarchies to the more standard
PCP based hardness of approximation results. The first difference is that these results
are unconditional, and do not depend on complexity assumptions. Secondly, these lower
bounds can be more specific. Showing a lower bound for r rounds shows that a large class
of algorithms cannot approximate the problem in time less than nΩ(r). Thus a lower bound
for any constant number of rounds rules out polynomial algorithms, a lower bound for a
logarithmic number of rounds gives a quasi-polynomial lower bounds, and a lower bound
for a linear number of rounds provides an exponential lower bound. Finally, these lower
bounds apply only to a specific class of algorithms.

1.1 VertexCover as an Illustrating and Motivating Example

We now present VertexCover as example to both motivate and illustrate this line
of research. Throughout we will discuss previous work.

Linear Programs The usual way to arrive at a linear program relaxation is to start with
an integer programming version of a computational problem. For our example we focus on
the VertexCover problem: given a graph, what is the minimum size of any vertex cover,
where a vertex cover is a set of vertices such that each edge in the graph vertex is incident
to a vertex in the set (see Section 1.6 for precise definitions). The VertexCover instance of
a graph G = (V,E) can be described by the following integer program:

min
∑
v∈V

xv such that (1.1)

∀(xv, xu) ∈ E xv + xu ≥ 1

∀xv ∈ V xv ∈ {0, 1}

3

where there is a variable xv for each vertex in the graph, and xv is set to 1 if the vertex is
in the cover, and is set to 0 if the vertex is not in the cover. We can then relax this integer
program to a linear program by no longer requiring that the variables are 0 or 1, but simply
between 0 and 1.

min
∑
v∈V

xv such that (1.2)

∀(xv, xu) ∈ E xv + xu ≥ 1

∀xv ∈ V xv ∈ [0, 1]

This program can now be solve in polynomial time, but the relationship between
the solution to Equations 1.1 and 1.2 is not clear.

The relationship between these two programs is captured by the integrality gap.
The integrality gap is defined to be the largest ratio between the solutions of the integer
program and the relaxed program over any instance of the problem (here between Equa-
tions 1.2 and 1.1 over any VertexCover instance). In other words, how much information can
be lost when passing from the integer program to the linear program. The integrality gap
is an important measure because if we can upper bound the integrality gap by α, then we
have shown that the relaxation provides an α-approximation algorithm. It is also thought
that a lower bound on the integrality gap provides a good bound on the approximation
ratio achievable from a relaxation, but this cannot be proven (see discussion later in this
section for more details.)

Usually we will show that the integrality gap is upper bounded by showing a
rounding algorithm. For example, in the case above a solution to Equation 1.2 can be
converted to a solution to Equation 1.1 by simply rounding every xv to the closest integer
value (12 round up to 1). It is easy to verify that any solution to Equation 1.2 will, once
rounded, satisfy Equation 1.1. Moreover, the objective function,

∑
v∈V xv, will at most

double by rounding. This shows that the integrality gap is at most 2.
We can also lower bound the integrality gap. To do this, we exhibit an instance

where the solution to the integer program is large (there is no good combinatorial solution),
but the solution to the relaxed program is small (there is a good relaxed solution). In the
example above we can take our example to be the complete graph on n-vertices. The best
vertex cover is all but one vertex, and so has n−1 vertices. However assigning each xv = 1/2
satisfies the linear program and has objective function n/2. Thus the ratio between solutions
to Equations 1.2 and 1.1 is at least n−1

n/2 ; for large enough n this is arbitrarily close to 2.
The above integrality gap does not provide convincing evidence that VertexCover

is hard to approximate to a factor better than 2. Rather it just seems that the relaxation
in Equation 1.2 is not sufficiently powerful, and surely we can do better. For example, we
could add the following requirement into Equation 1.1:

∀(xv, xu), (xv, xw)(xu, xw) ∈ E xv + xu + ww ≥ 2

This actually does not affect Equation 1.1 at all because any solution that satisfies the
constraints of Equation 1.1 automatically satisfies this constraint. However, when we relax
with the additional constraint we get:

4

min
∑
v∈V

xv such that (1.3)

∀(xv, xu) ∈ E xv + xu ≥ 1

∀(xv, xu), (xv, xw)(xu, xw) ∈ E xv + xu + ww ≥ 2

∀xv ∈ V xv ∈ [0, 1]

The previous integrality gap instance of the complete graph on n vertices no longer
holds, because the newly added equations are not satisfied. However, it turns out that there
are instances that prove the integrality gap remains 2.

We can visualize what is happening here. First, because the objective function is
linear, we see that Equation 1.1 optimizes over the convex hull of the valid integral vertex
covers (because the minimum must occur at an extremal point). Equation 1.2 optimizes
over a potentially much larger space that contains all the space considered by Equation 1.1.
Thus Equation 1.2 may find good solutions that do not lie in the space of valid solutions
for Equation 1.1. By adding constraints as in Equation 1.3 the space over which we are
optimizing is cut down towards its original size.

The Lovász-Schijver hierarchy (and the stronger Sherali-Adams) hierarchy auto-
matically generate constraints (or cuts), which shrink the space of valid solutions. For
example, all the odd-cycle constraints (of which the above triangle constraint is a special
case) are generated by one round of the Lovász-Schijver hierarchy. We are interested in
weather or not these cuts decrease the integrality gap. Because these hierarchies quickly
generate previously ad hoc constraints, like odd-cycle constraints, integrality gaps against
there hierarchies are strong indications that linear programming alone will not provide a
sub-exponential algorithm to approximate VertexCover.

In Chapter 2 we show an integrality gap of 2 − ε remains after Ω(n)1 rounds of
the Lovász-Schrijver hierarchy, which is optimal. This result, which was first published in
Schoenebeck, Tulsiani, and Trevisan [26] builds on the previous work of Arora, Bollobas,
Lovász, and Tourlakis [2, 3, 28] who prove that even after Ω(logn) rounds the integrality
gap of LS is at least 2 − ε, and that even after Ω((logn)2) rounds the integrality gap of
LS is at least 1.5 − ε. It should be noted that Arora, Bollobas, and Lovász [2] pioneered
the technique of showing unconditional inapproximability results by illustrating integrality
gaps against linear programming hierarchies.

Subsequently, Charikar, Makarychev, and Makarychev [10] show that, for some
ε, after nε rounds an integrality gap of 2 − o(1) remains for the Sherali-Adams hierarchy
(which is stronger than the LS hierarchy).

Why Integrality Gaps? We can also ask why we should believe that an integrality
gap provides a convincing lower bound. First, if one only looked at the value of the linear
programming object function, then this is the best one can do (assuming there are some tight
instances–which will occur in any natural problem). However, one could certainly provide
an algorithm with a linear program that beat the integrality gap by first solving the linear

1In all integrality gap containing an ε, the constant in the Ω depends on ε.

5

program, ignoring the output, and then solving the instance exactly by exhaustive search. If
the rounding algorithm is agnostic toward the original instance, and only uses information
from the linear programming solution, then the integrality gap should be hard to beat.
Indeed, there are no known natural linear or semidefinite programs based algorithms that
give an approximation ratio better than the integrality gap.

There are a few peculiarities about the integrality gap. First, look at the trivial
algorithm that solves the LP and multiplies the objective function by the integrality gap.
This algorithm is actually most accurate on instances with large integrality gap, and is
furthest from the truth in instances with the integer program and linear program most
resemble each other. Note that in the above VertexCover example the rounding algorithm
does very well on the complete graph. Secondly, when showing integrality gaps, we are
looking for instances that are hard for linear programs to solve, but that are easy in some
other proof system. This is required to prove an integrality gap. The computationally
“hardest” instances will not easily provide an integrality gap if it is difficult to show that
there is no good combinatorial solution.

Semidefinite Programs Above we saw how to relax an integer program into a linear
program. Now we will show how to relax a quadratic program into a semidefinite program.
Again we will use VertexCover as an example. We first show how to encode an instance of
VertexCover as a quadratic program:

min
∑
v∈V

xv such that (1.4)

∀(xv, xu) ∈ E (1− xv)(1− xu) = 0

∀v ∈ V x2v = xv; xv ∈ R

Note that the only solutions to x2v = xv are 0 and 1, and it can easily be checked
that this is a correct encoding of the VertexCover problem. Now we homogenize the equa-
tions by making them all degree 2. We do this by adding a dummy variable x0 which is
supposed to represent the number 12.

min
∑
v∈V

x2v such that (1.5)

∀(xv, xu) ∈ E (x0 − xv)(x0 − xu) = 0

∀v ∈ V x2v = xv · x0; xv ∈ R
1 = x20; x0 ∈ R

We homogenized so that we are in a position to relex from a quadratic program to
a semidefinite program. We simply replace all the real variables with vectors in some larger
space R∗:

2In reality x0 can be 1 or -1, but it will not matter and the intuition is clearer if we think of it as 1.
Moreover the equation 1 = x20 is not homogeneous of degree 2, but we include this for ease of presentation.

6

min
∑
v∈V

∥xv∥2 such that (1.6)

∀(xv, xu) ∈ E ⟨x0 − xv⟩⟨x0 − xu⟩ = 0

∀v ∈ V ∥xv∥2 = ⟨xv, x0⟩; xv ∈ R∗

1 = ∥x0∥2; x0 ∈ R∗

This semidefinite program can be solved in polynomial time. Note that Equa-
tion 1.6 is a relaxation of Equation 1.4 in that any valid solution to Equation 1.4 can be
mapped to a valid solution of Equation 1.6 with the same objective function (just use 1-
dimensional vectors). Again, we would like to know the relationship between the solutions
to Equations 1.4 and 1.6, which again we measure by the integrality gap.

Similarly to the linear programming case, the integrality gap is 2. Rounding
can be done by rounding any vector with length at least

√
2 to 1, and any vector with

length less than
√
2 to 0. The integrality gap lowerbound was illustrated by Kleinberg and

Goemans [20]. Unlike in the linear programming case, a random graph does not exhibit an
integrality gap. Even this relaxation (which is effectively the Lovász-θ function) can “tell”
that the graph is random (and thus does not have a large vertex cover). This illustrates
a difference between linear programs and semidefinite programs–the same family of graphs
that gives good linear programming lower bounds, fails to provide semidefinite lower bounds
even after the first round. Thus semidefinite program integrality gaps may be much more
powerful.

Instead of using random graphs, Kleinberg and Goemans used Frankl Rödl graphs
do show a lower bound on the integrality gap. Frankl Rödl graphs have the set {0, 1}n
as their vertices, and edges connect points that are almost antipodal (they have fractional
Hamming distance 1−γ for some small γ). Frankl and Rödl [15] show that vertex covers for
such graphs contain nearly all the vertices. Intuitively, these graphs are geometrically very
close to the graph where each vertex is connected to the unique vertex of fractional Hamming
distance 1. This graph is a matching, and thus has a vertex cover of only 1/2 the vertices.
The intuition behind the result of Kleinberg and Goemans is that semidefinite programs are
aware of the geometric structure but not necessarily the combinatorial structure of problems,
and hence are “fooled” by instances that are geometrically close, but combinatorially far
from have a good solutions.

Again, we can ask what happens when we add additional constraints that do not
make a difference for the quadratic program, but do for the semidefinite program. For
example, we can add the constraint that ∀v, u ∈ V xv · xu ≥ 0. In the quadratic program,
because all values are 0 or 1, this always holds. However, in the semidefinite program, the
integrality gap lowerbound of Kleinberg and Goemans fails to satisfy these new inequalities.
Charikar [8] showed an integrality gap for this case, again using Frankl Rödl graphs.

The best known results for the Lovász-Schrijver+ hierarhcy are incomparable and
were show by shown by Georgiou, Magen, Pitassi, and Tourlakis[16] and Schoenebeck,
Tulsiani, and Trevisan [25]. The former result [16] builds on the previous ideas of Goemans
and Kleinberg [20] and Charikar [8], and shows that an integrality gap of 2 − ε survives

7

Ω(
√

logn
log log n) rounds of LS+. The later result shows an integrality gap of 7

6 − ε survives

Ω(n) rounds. This result builds on past research which we review here as it is relevant for
understanding the results of this thesis.

A result of Feige and Ofek [14] immediately implies a 17/16− ε integrality gap for
one round of LS+, and the way in which they prove their result implies also the stronger
7/6− ε bound. The standard reduction from Max-3-SAT to VertexCover shows that if one
is able to approximate VertexCover within a factor better than 17/16 then one can approxi-
mate Max-3-SAT within a factor better than 7/8. This fact, and the 7/8−ε integrality gap
for Max-3-SAT of Alekhnovich, Arora, and Tourlakis [1], however do not suffice to derive
an LS+ integrality gap result for VertexCover. The reason is that reducing an instance of
Max 3SAT to a graph, and then applying a VertexCover relaxation to the graph, defines a
semidefinite program that is possibly tighter than the one obtained by a direct relaxation
of the Max 3-SAT problem. Feige and Ofek [14] are able to analyze the value of the Lovász
θ-function of the graph obtained by taking a random 3-SAT instance and then reducing it
to an instance of IndependentSet (or, equivalently, of VertexCover). Schoenebeck, Tulsiani,
and Trevisan apply this same idea, reducing a random 3-XOR instance to VertexCover, and
then showing that this instance provides an integrality gap for Ω(n) rounds of LS+ (using
many techniques borrowed from Alekhnovich, Arora, and Tourlakis).

In this thesis we show integrality gaps for the Lasserre hierarchy that match (and
thus subsume) those of Schoenebeck, Tulsiani, and Trevisan for the LS+ hiearchy. To do
this, we first prove integrality gaps for random 3-XOR instances, and then show that, in
Lasserre unlike LS+, the usually reduction does preserve these integrality gaps. This work
was first published in [24]. Subsequent work by Tulsiani [29] generalized the 3-XOR results
to an larger class of CSPs and simulated the Dinur and Safra [13] VertexCover reduction
to obtain a Lasserre integrality gap of ≈ 1.36 for Ω(nε) rounds.

Other results by Hatami, Magen, and Markakis [18] prove a 2 − o(1) integrality
gap result for semidefinite programming relaxations of VertexCover that include additional
inequalities. The semidefinite lower bound of Hatami et al is implied after five rounds of
Lasserre.

1.2 Other Previous Results

While much of the lower bounds work has been done on VertexCover (directly, or
indirectly), there has been prior work for other problems as well.

For MaxCut, de la Vega and Kenyon [12] showed that a 1/2+ o(1) integrality gap
for MaxCut remains after any constant number of rounds in the Sherali-Adams hierarchy.
Charikar, Makarychev, and Makarychev [10] extend this result to nε rounds, for some ε.
This thesis also shows a similar result for Sparsest Cut.

Buresh-Oppenheim, Galesy, Hoory, Magen and Pitassi [7], and Alekhnovich, Arora,
Tourlakis [1] prove Ω(n) LS+ round lower bounds for proving the unsatisfiability of random
instances of 3-SAT (and, in general, k-SAT with k ≥ 3) and Ω(n) round lower bounds for
achieving approximation factors better than 7/8−ε for Max-3-SAT, better than (1−ε) lnn
for Set Cover, and better than k − 1 − ε for HypergraphVertexCover in k-uniform hyper-
graphs. They leave open the question of proving LS+ round lower bounds for approximating

8

the VertexCover problem.
In addition, recent work by Eden Chlamtac [11] has shown improved approxima-

tion algorithms for Coloring and IndependentSet in 3-uniform hypergraphs. In [11] the
Lasserre hierarchy was used to find and analyze the constraints which led to improved ap-
proximations. This work is unlike the aforementioned work, where it was only later realized
that the approximation results could be viewed as an application of semidefinite program
hierarchies.

1.3 Results Overview

This thesis contains two main types of results: integrality gaps for the LS hierarchy,
and integrality gaps for the Lasserre hierachy.

Results for the Lovász-Schrijver hierarchy For the LS hierarchy, we prove that after
Ωε(n) rounds the integrality gap of VertexCover remains at least 2− ε.

We then apply our methods to the MaxCut problem, and we show that after Ωε(n)
rounds of LS the integrality gap of MaxCut remains at most 1

2 + ε.

Results for the Lasserre hierarchy For k ≥ 3, we show that Ω(n) levels of Lasserre
hierarchy cannot prove that a random k-CSP over any predicate implied by k-XOR is
unsatisfiable. From this main results it quickly follows that the Ω(n)th level of Lasserre:

• cannot prove a random k-XOR formula unsatisfiable.

• cannot prove a random k-SAT formula unsatisfiable.

• contains integrality gaps of 1/2 + ε for Max-k-XOR

• contains integrality gaps of 1− 1
2k

+ ε for Max-k-SAT.

• contains integrality gaps of 7
6 − ε for VertexCover.

• contains integrality gaps of any constant for k-UniformHypergraphVertexCover.

• contains integrality gaps of Ω(1) for k-UniformHypergraphIndependentSet.

In addition to the power of this result, it is also very simple. It extends and
simplifies results in Schoenenbeck, Trevisan, and Tulsiani [25] and Alekhnovich, Arora,
and Tourlakis [1]. To a large extent it also explains the proofs of Fiege and Ofek [14]
and Schoenenbeck, Trevisan, and Tulsiani [25], and can be seen as being inspired by these
results.

1.4 Techniques Overview

Techniques for the Lovász-Schrijver hierarchy The instances for which we prove the
integrality gap results are (slight modifications of) sparse random graphs. In such graphs,

9

the size of the minimum vertex cover is ≈ n, where n is the number of vertices, while we
show the existence of a fractional solution of cost n · (12 + ε) that remains feasible even after
Ωε(n) rounds. The size of a maximum cut is ≈ m

2 , where m is the number of edges, while
we show the existence of a fractional solution of cost m · (1− ε) that also remains feasible
after Ωε(n) rounds.

We use two properties of (modified) sparse random graphs. The first property is
large girth; it suffices for our application that the girth be a large constant depending on
ε. The second property is that for every set of k = o(n) vertices, such vertices induce a
subgraph containing at most (1+o(1))k edges. The same properties are also used in [3, 28].

In order to prove that a certain fractional solution y is feasible for a relaxation
Nk(K), it is sufficient to construct a matrix Y such that certain vectors obtained from the
rows and columns of Y are all feasible solutions for Nk−1(K). (By convention, N0(K) :=
K.) This suggest an inductive approach, where we have a theorem that says that all
solutions satisfying certain conditions are feasible from Nk(K); to prove the theorem we
take a solution y that satisfies the conditions for a certain value of k, and then we construct
a matrix Y such that all the derived vectors satisfy the conditions of the theorem for k− 1,
and hence, by inductive hypothesis, are feasible from N (k−1)(K), thus showing that y is
feasible for Nk(K). We can also use the fact that the set Nk−1(K) is convex; this means
that, once we define the matrix Y , and we have to prove that the associated vectors are
in Nk−1(K), it suffices to express each such vector as a convex combination of vectors that
satisfy the conditions of the theorem for k− 1. (These ideas all appear in previous work on
LS and LS+ integrality gaps.)

Roughly speaking, in the work of Arora et al. [3] on VertexCover, the appropriate
theorem refers to solutions where all vertices are assigned the value 1/2+ ε, except for a set
of exceptional vertices that belong to a set of constant-diameter disks. Oversimplifying, to
prove a lower bound of k rounds, one needs to consider solutions that have up to k disks,
and for the argument to go through one needs the union of the disks to induce a forest,
hence the lower bound is of the same order as the girth of the graph. Tourlakis [28] does
better by showing that, due to extra conditions in the theorem, the subgraph induced by
k “disks” has diameter O(

√
k), and so it contains no cycle provided that the girth of the

graph is sufficiently larger than
√
k. This yields an integrality gap result that holds for a

number of rounds up to a constant times the square of the girth of the graph.3

The solutions in our approach have a similar form, but we also require the disks
to be far away from each other. When we start from one such solution y, we construct a
matrix Y , and consider the associated vectors, we find solutions where disks are closer to
each other than allowed by the theorem, and we have to express such solutions as convex
combinations of allowed solutions. Roughly speaking, we show that such a step is possible
provided that the union of the “problematic” disks (those that are too close to each other)
induces a very sparse graph. Due to our choice of random graph, this is true provided
that there are at most cε · n disks, where cε is a constant that depends only on ε. We
also show that, in order to prove an integrality gap for k rounds, it is sufficient to consider
solutions with O(k) disks, and so our integrality gap applies even after Ωε(n) rounds. Hence

3Arora et al. [3, 28] present their proofs in the language of a “prover-verifier” game, but they can be
equivalently formulated as inductive arguments.

10

(again, roughly speaking) our improvement over previous work comes from the fact that
it suffices that the union of the disks induce a sparse graph (something which is true for
a sublinear number of disks) rather than induce a forest (a requirement that fails once we
have a logarithmic or polylogarithmic number of disks). This oversimplified sketch ignores
some important technical points: We will give a more precise overview in Section 2.2.

Techniques for the Lasserre hierarchy The instances for which we prove the integral-
ity gap results are random 3-XOR formula with a particular clause density. For example,
we show that for random 3-XOR formula the with sufficient clause density (say 5n clauses,
where n is the number of variables), with high probability, Lasserre cannot refute the for-
mula after Ωε(n) rounds, even though in such formulas as most 1

2 + ε of the clauses can be
simultaneously satisfied.

That with high probability, there is no solution that satisfies more than 1
2 + ε

fraction of the clauses is a well known result that follows from a straight-forward application
of a Chernoff bound.

To show that Lasserre cannot refute such formula even after Ωε(n) rounds we will
construct vectors that satisfy the Lasserre constraints. We show that if width-δn resolution
fails to refute a formula, then we can construct vectors that satisfy the constraints of δn/4-
rounds of Lasserre. Width-w resolution allows to you to “add” any two clauses that you
have already derived, as long as the number of variables in the resulting clause is at most w.
This can be seen as making “local” inferences about the solution space. A result by Ben-
Sasson and Widgerson [6] shows that with high probability, width-δn resolution is unable
to refute random 3-SAT formulas. This result is easily extended to random 3-XOR formula.

It is left to explain how to construct vector solutions given the fact that a formula
is not refuted by width-w resolution. We use the list of all clauses generated by the width-w
resolution. This list contains all the Fourier coefficients of low-weight that are disallowed
by local considerations. Our solution will “randomize” over all the solutions that do not
violate any of these constraints. To construct the vectors, we create a coordinate for each
low-weight Fourier coefficient, but merge Fourier coefficients that are forced to be the same
(by constraints derive by width-w resolution) into the same coordinate. Using the Fourier
transform (plus merging), any partial assignment to a few variable can be naturally mapped
to this space of merged low-weight Fourier coefficients to create the vector solutions. Intu-
itively, these vectors work well for two reasons: 1) these vectors behave well under addition
because this transformation is linear , 2) dot-products between these vectors behave well
because, by construction, when the coordinate line up, they are exactly correlated, when
they do not line up, they are completely independent.

Unlike in the Lovász-Schrijver and Lovász-Schrijver+ hierarchies, local-gadget re-
ductions preserve integrality gaps in Lasserre. We use this observation to obtain the re-
maining results.

1.5 Related Areas and Future Directions

One of the remarkable things about integrality gaps for linear and semidefinite
programming hierarchies is that they have connections to a diverse array of other topics.

11

Some of these connections have already been forged, and some provide hope for future
progress.

Inappromibility, NP Harndess, and Unique Games For many NP-complete com-
binatorial optimization problems a sharp threshold divides which approximation ratios are
obtainable in P, and which are NP-complete. However, we do not yet know of such a
threshold for most problems which are based on constraints over two variables (2-CSPs).
For example, in VertexCover the constraints are over the pairs of vertices incident to an
edge and require that at least one of these vertices must be in the set. UniqueGames and
SparsestCut also fall in this regime. Although we cannot reduce to approximate versions
of these problems from NP-complete problems, we can reduce to them from the problem of
determining whether a “unique game” is almost completely satisfiable, or almost completely
unsatisfiable. The Unique Games Conjecture (UGC) states that this problem is, in fact,
NP-complete. Thus if the UGC is true, we would have (largely) finished categorizing the
approximability of 2-CSPs (assuming that P ̸= NP). There is an intimate tie between the
UGC and SDP relaxations. Informally, if the UGC is true, then SDP relaxations provide an
optimal method for approximating a large array of combinatorial optimization problems.

One pessimistic conjecture is that the UGC is true and SDP relaxations give the
optimal approximation algorithms. A second and slightly more optimistic conjecture is
that the UGC is not true, but captures the limitations of SDP relaxations. Thus we will
have to find fundamentally new tools to attack these problems. A third conjecture is that
SDP relaxations can disprove the unique games conjecture. The jury is still out, and the
evidence is circumstantial. Algorithmic results get as close as possible to approximating
unique games without actually disproving the conjecture. A recent result shows that SDP
relaxations do solve unique games on expanding instances [4]. Moreover, no one has yet
exhibited an integrality gap for unique games that survives two rounds of Lasserre.

If one of the first two conjectures is true, then SDP relaxations will not be able to
distinguish between the two, but integrality gaps would be able to eliminate the possibility
of the third conjecture. If the third conjecture is true, then SDPs would clearly resolve the
issue. In any event, SDP relaxations are still not understood, and have more to say about
the situation.

Currently, we do not have an optimal integrality gap that survives even two rounds
of Lasserre for UniqueGames, VertexCover, or SparsestCut. Such Lasserre integrality gaps
would provide additional evidence for UGC, or at least that UGC will not be solved by
semidefinite programming. These gaps may not exist. For example, a MaxCut algorithm
that cuts more than a 1−

√
ε- fraction of the edges in instances where it is possible to cut

1−ε fraction of the edges, would disprove the UGC. Perhaps a new SDP rounding technique
applied to Lasserre could prove such a result, which would be extremely interesting, even if it
were only slightly subexponential (for example, it required o(n log(n))-rounds of Lasserre).

Additionally, some hardness results are not predicated on the hardness of unique
games, but rather other similar problems (such as 2-1 games with perfect completeness).
The hardness of these games could be analyzed through the lens of SDP relaxations in a
manner similar to unique games. Whereas UniqueGames does have an integrality gap for
its basic relaxation [19], some of these problems lack any known integrality gap, even for

12

extremely weak relaxations.
This line of research has forged deep relations between approximation algorithms,

proof complexity, metric embeddings, average case hardness, and local algorithms. The
knowledge gained by insights into the power and limitations of linear and semidefinite
programs has substantial promise to provide natural inroads into each of these fields.

Average Case Complexity and Bad instances Most complexity theoretic results
are “worst-case” instead of “average-case”, even though we usually care more about the
average case hardness. Even if we do not hope to solve NP-complete problems over all
instances, some can be solved over all instances that arrive in practice. This leads to
awkward conversation between theorists and practitioners where the theorist claims that a
problem is computationally intractable, and the practitioner claims that he solves it without
too much trouble every day. Current theoretical techniques have been largely unable to
provide a good understanding of the average case hardness of problems.

Average case complexity is concerned with identifying hard distributions of prob-
lems and with distinguishing “easy” instances from “hard” instances. For SDP relaxations,
these problems have a concrete interpretation: namely, on what type of instances is the
integrality gap small (or non-existent) and on what type of instances is this gap large?
Equivalently, for what type of “easy” instances do SDP relaxations provide a good algo-
rithm, and what type of instances remain “hard”. Many of these SDP gaps have started
to give us insights into these questions. For example the 3-XOR results of [24] showed that
instances that have a lot of “expansion” will imply that an instance is “hard”. Conversely,
the results of [4] show that a similar “expansion” property makes instances of UniqueGames
“easy.” Further research on SDPs gives us a concrete way to start gaining more insights
into these challenging problems.

Local Algorithms Linear and SDP relaxations have a connection to local algorithms.
Solutions to these hierarchies must satisfy only local constraints looking at a few variables
at time (an exception is the semidefinite constraint, which is more of a global constraint).
Thus, SDP integrality gaps ask how correct can local solutions look without there being any
corresponding global solution. Alright this observation has been leveraged in [9] to make
new insights into the topic of metric embeddings.

Proof Complexity One requisite achievement before being able to solve an instance of
an NP-hard problem is to be able to prove that a particular solution is optimal. This
corresponds to proving a coNP statement. Any provably correct algorithm must implicitly
prove that no better solution than its output exists (or for approximation algorithms prove
that no solution is substantially better). Thus SDP relaxations can be seen as providing a
proof that no better solution exists. In fact, both the Lasserre and LS+ hierarchies can be
thought of as proof systems, where the number of rounds bounds the depth of the proof.
Integrality gaps for hierarchies immediately translate into lower bounds for the depth (or
rank) required in these corresponding results proof systems. This relationship also provides
another interesting direction for research: bounding the “size” of the proofs rather than
their depth.

13

1.6 Notation and Definitions

We denote the set of Boolean variables [n] = {1, . . . , n}. Let the range of variables
be denoted x = {xi}i∈[n] = {0, 1}n. For I ⊆ {1, . . . , n}, let xI = {xi}i∈I be the projection
of x to the coordinates of I. We will sometimes use v(i) to denote the ith coordinate of a
vector v, but at other times simply use vi.

We will consider problems where each constraint is local in that it is a k-junta, a
function that depends on at most k variables. Formally:

Definition 1 For I ⊆ [n] , let FI be the set of all functions that only depend on the variables
in I. That is there exists a function f|I : xI → {0, 1} such that f(x) ≡ f|I(xI).

A k-junta f is a function f : x → {0, 1} that depends on at most k variables. Let
Fk be the set of k-juntas, then

Fk =
∪

|I| ≤ k
I ⊆ [n]

FI

A k-constraint f is a k-junta that appears in the objective function or constraints
of an optimization problem.

Sometimes we use 1f to denote 1f = {x ∈ x : f(x) = 1}.

Definition 2 A k-constraint f implies another k-constraint g if 1f ⊆ 1g. We say that a
predicate is XOR-implied if it is implied by either parity or its negation.

For notational convenience, we will denote by f=xI(I) (or simply f=xI) the constraint

where f=xI(I) (x̄) = 1 if x̄I = xI and 0 otherwise. We will denote by 1⃗ and 0⃗ the functions

that are always and never true respectively (which are 0-juntas).
We will look at relaxations for two types of integer programs. In the first, we have

a set of constraints and would like to know if there is any feasible solution. In the second,
we have a set of constraints and would like to maximize some objective function subject to
satisfying the constraints. We formalize the notions here:

Definition 3 A k-constraint satisfiability problem ⟨x,C⟩ is a set of n Boolean variables in
the domain x = {0, 1}n, and a set of k-constraints C = {Ci}mi=1.

Definition 4 A k-constraint maximization (or minimization) problem ⟨x,C,M⟩ is a set
of n Boolean variables in the domain x = {0, 1}n, a set of k-constraints C = {Ci}mi=1, and

an objective function M : x → R to be maximized (or minimized) where M =
∑ℓ

j=1 λjfj
and each λj ∈ R and each fj is a k-junta.

1.6.1 Problems Studied

Let P : {0, 1}k → {0, 1} be a Boolean predicate on k-variables. Let Rn,k be the
set of all k tuples of literals and negated literals (or dictators and anti-dictators) such no
two depend on the same variable. That is

14

Rn,k = {(f=b1({i1}), . . . , f
=bk
({ik})) : where ∀j, j′ ∈ [k], ij ∈ [n], bj ∈ {0, 1}, and j ̸= j′ ⇒ ij ̸= ij′}

The language k-CSP-P consists of satisfiable k-CSPs for the form ⟨{0, 1}n,P ◦
R1, . . . ,P ◦ Rm⟩ where Rj ∈ Rn,k for 1 ≤ j ≤ m. That is, there exists x ∈ {0, 1}n such
that P ◦ Rj = 1 for each j ∈ [m]. Each function P ◦ Rj is called a clause or constraint.
In Max-k-CSP-P we want to find the maximum number of clauses that can be satisfied
simultaneously in CSPs of the same form.

To sample a random instance of k-CSP-P (or Max-k-CSP-P) with m clauses and
n variables, we can uniformly and independently sample m elements of Rn,k, to obtain the
instance ⟨{0, 1}n,P ◦R1, . . . ,P ◦Rm⟩.

k-XOR is just k-CSP-P where P ≡ ⊕k
i=1xi. Note that we can always rewrite the

constraint P ◦Rm as ⊕j∈Ixi = b where I ⊆ [n], |I| = k, b ∈ {0, 1}.
k-SAT is just k-CSP-P where P ≡ ∨ki=1xi.

Definition 5 Given a predicate P we define r(P) to be the probability that a random as-
signment satisfies P.

For example, in k-XOR, r(k-XOR) = 1/2; in k-SAT, r(k-SAT) = 1− (12)
k.

In VertexCover we are given a graph G = (V,E). There is a Boolean variable xi
for each vertex i ∈ V . For each edge (i, j) ∈ E we have a constraint which says that both
xi and xj cannot be zero. We are asked to minimize

∑
i∈V xi.

In k-UniformHypergraphIndependentSet we are given a k-uniform hypergraphG =
(V,E). There is a variable xi for each vertex v ∈ V . For each edge (i1, . . . , ik) ∈ E we
have a constraint which says that not all xi1 , . . . , xik can be one. We are asked to maximize∑

i∈V xi.

k-UniformHypergraphVertexCover is the same as
k-UniformHypergraphIndependentSet except that for each edge (i1, . . . , ik) ∈ E we have
a constraint which says that at least one of xi1 , . . . , xik must be one. We are asked to
minimize.

∑
i∈V xi.

1.6.2 Definition of Linear and Semidefinite Program Hierarchies

Here we will formally describe four linear/semidefinite program hierarchies. First
we define the Lovász-Schrijver linear program hierarchy and pay particularly close attention
to its definition on VertexCover, and MaxCut. Next we remark on how to extend this to
the Lovász-Schrijver+ hierarchy for semidefinite programs. We then define the Lasserre
semidefinite program hierarchy (for locally constrained problems). Finally, we remark on
how to weaken the Lasserre hierarchy to obtain the Sherali-Adams linear program hierarchy
(again, for locally constrained problems).

The Lovász-Schrijver Hierarchy

In this section we define the Lovász-Schrijver operator N , that maps a linear
programming relaxationK into a tighter one N(K). It is simpler to describe the application

15

of the operator to convex cones, as defined next. A convex cone is a set K ⊆ Rd such that
for every y, z ∈ K and for every non-negative α, β ≥ 0 we have αy + βz ∈ K.

We will use the following notation: for a matrix M , we denote by Mi the i-th row
of M .

If K ⊆ Rd is a convex cone, then we define N(K) ⊆ Rd as follows: a vector
y = (y0, . . . , yd−1) belongs to N(K) if and only if there is a matrix Y ∈ Rd×d such that

• Y is symmetric

• For all i = 0, . . . , d− 1, Y0,i = Yi,i = yi

• For all i = 0, . . . , d− 1, Yi and Y0 −Yi are in K.

In such a case, we say that Y is a protection matrix for y.
We also use the notation N0(K) := K and Nk(K) := N(Nk−1(K)).
Let G = (V,E) be a graph, and assume V = {1, . . . , n}. The cone of the linear

progamming relaxation of the VertexCover problem is the set of vectors y ∈ Rn+1 such that

yi + yj ≥ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (V C(G))

The relaxation of the VertexCover problem arising from k rounds of Lovász Schri-
jver is the solution of

min

n∑
i=1

yi

subject to (y0, y1, . . . , yn) ∈ Nk(V C(G))

y0 = 1

The integrality gap of this relaxation for graphs of n vertices is the largest ratio
between the minimum vertex cover size of G and the optimum of the above program, over
all graphs G with n vertices.

The linear programming relaxation for MAX-CUT is a set of constraint on n vertex
variables and m edge variables. For a vector u ∈ Rn+m+1, let u0 be the extra coordinate
for homogenization,4 (u1, . . . , un) denote the vertex variables and (ue1 , . . . , uem) denote the
the edge-variables. Then the cone is the solution set of the constraints

ue ≤ ui + uj ∀e = (i, j) ∈ E

ue ≤ 2u0 − (ui + uj) ∀e = (i, j) ∈ E

0 ≤ ui ≤ u0 ∀i ∈ V

0 ≤ ue ≤ u0 ∀e ∈ E

u0 ≥ 0 (MC(G))

4Homogenization is the process of expressing a linear programming relaxation as a convex cone rather
than as a subset of [0, 1]n.

16

The relaxation of the MAX-CUT arising from r rounds of Lovász Schrijver is the
solution of

max

n∑
e∈E

ue

subject to (u0, u1, . . . , un, ue1 , . . . , uem) ∈ N r(MC(G))

u0 = 1

The Lovász-Schrijver+ Hierarchy The Lovász-Schrijver operator N+, is defined the
exact same way as the Lovász-Schrijver operator N but has the additional requirement that
the protection matrix Y must also be positive-semidefinite.

Lasserre

The Lasserre relaxation defined momentarily is designed to progressively restrict
the feasible region of a constraint maximization (or minimization) problem ⟨x,C,M⟩ to be
closer and closer to the convex hull of the integer solutions, in such a way that maximizing
(or minimizing) over the feasible regions is still trackable.

Definition 6 The rth round of Lasserre on the k-constraint maximization problem ⟨x,C,M⟩
is the semidefinite program with a real vector variable vf for every r-junta f ∈ Fr. Let

M =
∑ℓ

i=1 λifi be the objective function. For reasons of convention, we will denote by v0
the vector for the function 1⃗

max
ℓ∑
i=1

λi||vfi ||
2

where

||v0||2 = 1 (1.7)

∀C ∈ C ||vC ||2 = 1 (1.8)

∀f, g, f ′, g′ ∈ Fr where
f · g ≡ f ′ · g′ ⟨vf , vg⟩ = ⟨vf ′ , vg′⟩

(1.9)

∀f, g, f + g ∈ Fr where

f · g ≡ 0⃗ vf + vg = vf+g
(1.10)

The semidefinite program for the rth Lasserre round of a satisfiability problem is
the same, but we only check for the existence of feasibility, we do not try to maximize over
any objective function. 5

5This definition is slightly different, but equivalent to other definitions of the kth level of the Lasserre
hierarchy (up to an additive constant). The way that it is stated, it would require double exponential time
to solve the rth level. This is easily remedied by only defining vectors for the and functions of up to r
variables and using linear combinations of these vectors to define the remaining vectors. We present it like
this for ease of notation.

17

We will now show some basic facts about the Lasserre hierarchy. First note that
this is a relaxation, because any {0, 1} integer solution x can be transformed into a {(0), (1)}
vector solution by setting vf = f(x).

Now, given a distribution of integer solutions, we know that there exists an equiv-
alent vector solution because each integer solution has an equivalent vector solution and
the program in convex. We can easily create explicit vectors that satisfy the Lasserre
constraints.

If (y1, . . . , yn) =
∑m

j=1 pj(z
j
1, . . . , z

j
n) where zji ∈ {0, 1}, zj = (zj1, . . . , z

j
n) are a

feasible integral solutions, and
∑m

j=1 pj = 1, that is (y1, . . . , yn) is from a probability dis-

tribution of integral solutions, then, for each possible k-junta f ∈ Fk we can produce a
vector.

vf (j) =

{ √
pj f(zj) = 1

0 otherwise
(1.11)

These vectors will satisfy all the constraints of the Lasserre hierarchy at any level. If the
reader is unfamiliar with the definition of the Lasserre hierarchy, then it is a straightforward
and useful exercise to verify this fact.

While the Lasserre equations can be confusing, one general intuition is that satis-
fying vectors from the rth level of the Lasserre hierarchy define a probability distribution
on any set of up to r coordinates (Equations 1.7, 1.9, and 1.10); that the probability distri-
butions always satisfy the constraints (Equation 1.8); and that the probability distributions
properly patch together (Equation 1.9). While global probability distributions map directly
to vectors, vectors only map to local distributions (marginal distributions over r variables).

We will momentarily formalize this intuition, but first note that this intuition is
not sufficient. In applications, it is usually important that we have vectors and not simply
local distributions that patch together. The fact that we have vectors gives some global
orientation. The Goemans-Williamson MaxCut algorithm generates a global cut with a
hyperplane. It is not clear how to do this with a local distributions alone.

Given a set of vectors {vf}f∈Fr that satisfy the rth level the Lasserre hierarchy,
we can define scalar variables {pf}f∈Fr by letting pf = ||vf ||2. Then pf can be thought of
as the probability that a randomly drawn solution satisfies the function f from the alleged
distribution (which may not exists at all). Also we denote by vxI (or pxI) the vector (or
“probability”) corresponding to f=xI .

Claim 7 Fix I ⊆ [n] such that |I| ≤ r. Then we can derive a probability distribution
over the elements of xI ∈ xI by defining the “probability” of xI , pxI to be ||vxI ||2, where
vxI ≡ vf=xI . Actually, these vectors are all orthogonal, and if you sum over them, you get
v0.

Proof: If xI , x
′
I ∈ xI , then vxI and vx′I are orthogonal because f=xI · f=x′I = 0⃗ and so by

Equation 1.9 ⟨vxI , vx′I ⟩ = ||0⃗||2 and by Equation 1.10 ||v0⃗||
2 = 0

Thus, by Equation 1.7 then Equation 1.10:

1 = ||v1⃗||
2 = ||

∑
xI∈xI

vxI ||
2 =

∑
xI∈xI

||vxI ||
2

18

So indeed we have a probability distribution. �

Claim 8 If Equations 1.7, 1.9 and 1.10 are satisfied, then Equation 1.8 is equivalent to
requiring that ||vxI ||2 = 0 for all xI where xI ̸∈ 1C|I for some C ∈ C ∩ FI .

Proof: We only used Equations 1.7, 1.9 and 1.10 to show Claim 7. So we know that
the vxI are all orthogonal and by Equation 1.10 additionally know that if C ∈ FI then
C =

∑
xI∈1C|I

f=xI and so by Equation 1.10 we have that vC =
∑

xI∈1C|I
vxI . Putting

these facts together we see.

1− ||vC ||2 = ||v0||2 − ||vC ||2 = ||
∑
xI∈xI

vxI ||
2 − ||

∑
xI∈1C|I

vxI ||
2

=
∑
xI∈xI

||vxI ||
2 −

∑
xI∈1C|I

||vxI ||
2 =

∑
xI ̸∈1C|I

||vxI ||
2

Thus ||vC ||2 = 1 if and only if
∑

xI ̸∈1C|I
||vxI ||2 = 0 �

The Sherali-Adams Hierarchy The rth level of the Sherali-Adams hierarchy is defined
the same way as the Lasserre hierachy, but only contains scalars, not vectors:

Definition 9 The rth round of Sherali-Adams on the k-constraint maximization problem
⟨x,C,M⟩ is the linear program with a real variable pf for every r-junta f ∈ Fr. Let

M =
∑ℓ

i=1 λifi be the objective function. For reasons of convention, we will denote by p0
the variable for the function 1⃗

max

ℓ∑
i=1

λipfi

where

p0 = 1 (1.12)

∀C ∈ C pC = 1 (1.13)

∀f, g, f + g ∈ Fr where

f · g ≡ 0⃗ pf + pg = pf+g
(1.14)

The linear program for the rth Lasserre round of a satisfiability problem is the
same, but we only check for the existence of feasibility, we do not try to maximize over any
objective function. 6

6This definition is slightly different, but equivalent (up to a constant additive term) to other definitions of
the rth level of the Sherali-Adams hierarchy. The way that it is stated, it would require double exponential
time to solve the rth level. This is easily remedied by only defining vectors for the and functions of up to r
variables and using linear combinations of these vectors to define the remaining vectors. We present it like
this for ease of notation.

19

1.6.3 Fourier Analysis

Let I ⊆ [n], then we define the character χI : {0, 1}n → {−1, 1} ⊆ R as

χI(x) =
∏
i∈I

(−1)xi = (−1)
⊕

i∈I xi

Note that χI · χJ = χI△J . The weight of a character χI is defined to be |I|, the number of
input variables on which its value depends. We use the following facts:

1. Any function f : {0, 1}n → {0, 1} ⊆ R can be written as

f(x) =
∑
I⊆[n]

f̂(I)χI(x)

where f̂(I) = Ex f(x)χI(x). Note that if f is a k-junta, then for |I| > k, f̂(I) = 0.

2. For any functions f, g : {0, 1}n → {0, 1} ⊆ R we have that f̂ + g(I) = f̂(I) + ĝ(I).

3. For any functions f, g : {0, 1}n → {0, 1} ⊆ R we have that f̂ · g(I) =
∑
J ⊆ [n]f̂(J)ĝ(I△J)

4. Fix I ⊆ [n] and define f : {0, 1}n → {0, 1} ⊆ R as f(x) =
⊕

i∈I xi Then f̂(∅) = 1
2 ,

f̂(I) = −1
2 and for J ⊆ [n], J ̸∈ {∅, I} then f̂(J) = 0.

20

Chapter 2

Linear Round Integrality Gaps for
Lovasz-Schrijver

2.1 Our Results

Define an (α, δ, γ, η) graph G on n vertices as a graph with girth δ log(n), and such
that no vertex cover of size (1 − α)n exists and each induced subgraph of G with k ≤ γn
vertices, has at most (1 + η)k edges.

Lemma 10 For every 0 < α < 1/125, η > 0, there exists a d = d(α) ∈ N, δ, γ > 0,
and N ∈ N such that for n ≥ N there exists an (α, δ, γ, η) graph with max cut less than
1
2 |E|(1+α) and maximum degree at most d on n vertices. Here d(α) is an explicit function
that depends only on α.

Lemma 11 For every η, δ, γ > 0, 0 < ε < 1/20, d ∈ N if G is an (α, δ, γ, η) graph with
maximum degree at most d on n vertices then (1, 1/2+ε, . . . , 1/2+ε) ∈ NΩε,η,δ,γ,d(n)(V C(G))
if η ≤ η(ε, d) where η(ε, d) is an explicit function that depends only on ε and d.

Lemma 12 For every η, δ, γ > 0, 0 < ε < 1/20, d ∈ N if G is an (α, δ, γ, η) graph with
maximum degree at most d on n vertices then the solution y defined as y0 := 1, yi := 1/2+ε
and ye := 1−2ε is in NΩε,η,δ,γ,d(n)(MC(G)) if η ≤ η(ε, d) where η(ε, d) is an explicit function
that depends only on ε and d.

Theorem 13 For all 0 < ζ < 1/50, there is a constant cζ > 0 such that, for all sufficiently
large n, the integrality gap for VertexCover after cζn rounds is at least 2− ζ.

Proof: Let α = ζ/6 and ε = ζ/6. Let d = d(α) where d(α) is as in Lemma 10. Let η =
η(ε, d) where η(ε, d) is as in Lemma 11. Then by Lemma 10, there exists a δ, γ > 0, N ∈ N
such that such that for n ≥ N there exists an (α, δ, γ, η) graph with maximum degree at most
d on n vertices. By Lemma 11, the vector (1, 1/2 + ε, . . . , 1/2 + ε) ∈ NΩε,η,δ,γ,d(n)(V C(G))

because η = η(ε, d). This exhibits an integrality gap of 1−α
1/2+ε =

1−ζ/6
1/2+ζ/6 ≥ 2− ζ. �

Similarly, we have

21

Theorem 14 For all 0 < ζ < 1/50, there is a constant cζ > 0 such that, for all sufficiently
large n, the integrality gap for MaxCut after cζn rounds is at most 1

2 + ζ.

Lemma 10 is very similar to results already known in the literature (for example
[3]) and so we only prove the additional properties that we require in the appendix. Most
of the rest of the chapter is dedicated to a proof of Lemma 11. Lemma 12 will follow via a
relative simple “reduction” to Lemma 11.

2.2 Overview of the Proof

If D is a random variable ranging over vertex covers, then the solution yD where
y0 = 1 and yi = Pr[i ∈ D] is a convex combination of integral solutions, and so it survives
an arbitrary number of rounds of LS. The protection matrix for yD is the matrix Y = YD
such that Yi,j = Pr[i ∈ D ∧ j ∈ D].

In trying to show that a given vector y survives several rounds of LS, it is a good
intuition to think of y as being derived from a probability distribution over vertex covers
(even if y is not a convex combination of integral solutions, and cannot be derived in this
way) and, in constructing the protection matrix Y , to think of Y as being derived from the
said distribution as above.

Note that for the above matrix, the vectors z = Yi/yi and w = (Y0−Yi)/(1−yi)
correspond to conditional distributions with zj = Pr[j ∈ D|i ∈ D] and wj = Pr[j ∈ D|i /∈
D]. To show that y ∈ Nk(V C(G)), we must show that z,w ∈ Nk−1(V C(G)) for the
vectors z and w corresponding to every i. The kth row in the protection matrices may now
be interpreted as the distribution obtained by further conditioning on k. Intuitively, more
rounds of LS correspond to further conditioning on other vertices which do not already
have probability 0 or 1 in these conditional distributions. We often refer to vertices having
probability 0/1 as being fixed in the distribution.

Since only r vertices can be conditioned upon in r rounds, we only need to create
solutions that look “locally” like distributions over vertex covers for small sized subgraphs.
Also, because the given graph has large girth, subgraphs of size O(log n) are trees. We thus
start by expressing the vector y = (1, 1/2+ε, . . . , 1/2+ε) as a probability distribution over
vertex covers for a tree. This distribution we define has the property that conditioning on
a vertex i only affects the vertices upto a constant distance ℓ from i. In fact, the effect of
conditioning decreases exponentially with the distance from i and we explicitly truncate it at
distance ℓ = O(1ε log(

1
ε)). The conditional distribution is referred to as a splash around i as

it creates “ripples” (change in probabilities) which decrease with distance from i. Fernandez
de la Vega and Kenyon [12, Section 5] describe essentially the same distribution of vertex
covers over trees in their paper, suggesting its usefulness for proving integrality gaps for the
VertexCover problem.

We start with the vector (1, 1/2 + ε, . . . , 1/2 + ε) for the given graph G. After
one round of LS, each row i of the protection matrix is defined by changing only weights
of vertices within distance a distance ℓ of vertex i according to a splash. Since it affects
only a small subgraph, which is a tree rooted at i, the solution “looks” locally like a valid
conditional distribution.

22

Now consider trying to extend this strategy to a second round. Say we want to
show that the ith row of the protection matrix above survives another round. We thus need
to create another protection matrix for this row. Each row of this new matrix corresponds to
conditioning on some other vertex j. If i and j are at distance greater than 2ℓ, the weights
(probabilities) of vertices within a distance ℓ from j are still 1/2 + ε. The conditional
distribution can then be created by replacing these values according to a splash around j
and leaving the weights of the other vertices as unchanged. If the distance between i and j
is less than 2ℓ and k is a vertex within distance ℓ of either i or j, we modify the weight of
k according to the probability that both i and j are in the vertex cover.

It would become, unfortunately, very complex to proceed for a large number of
rounds with this kind of analysis, and it would appear that the girth of the graph would
be a natural limit for the number of rounds for which we can extend this line of argument.
(See indeed [3, 28].)

We note however that certain cases are simpler to handle. Suppose that we are
given a vector y that is 1/2 + ε everywhere except in a number of balls, all at distance at
least 5ℓ from each other, in which the values of y are set according to splashes. Then the
above ideas can be used to define a valid protection matrix. Unfortunately, this does not
seem to help us in setting up an inductive argument, because the structure of the vector
that we start from is not preserved in the rows of the protection matrix: we may end up
with splash areas that are too close to each other, or with the more special structures that
we get by conditioning on a vertex less than distance 2ℓ from the root of a splash.

Our idea, then, is to take such more complex vectors and express them as convex
combinations of vectors that are 1/2 + ε everywhere except in splash areas that are at
distance at least 5ℓ from each other. We will refer to such solutions as canonical solutions.
Since we are trying to show that the complex vector belongs to some convex cone, it suffices
to show that each one of these simpler vectors is in the cone. Now we are back to the same
type of vectors that we started from, and we can set up an inductive argument.

Our inductive argument proceeds as follows: we start from a solution y in a
“canonical” form, that is, such that all vertices have value 1/2 + ε except for the vertices
belonging to at most k splashes; furthermore, the roots of any two splashes are at distance
at least 5ℓ from each other. We need to construct a protection matrix Y for this vector.
To define the jth row Yj of the protection matrix we reason as follows: if j is far (distance
> 2ℓ) from the roots of all the splashes in y, then Yj looks like y, plus a new splash around
j. If j is at distance ≤ 2ℓ from a splash (and, necessarily, far from all the others) rooted at
a vertex r, then we replace the splash rooted at r with a new splash which corresponds to
our original distribution over trees conditioned on both r and j.

If Yj happens to be a vector in canonical form, we are done, otherwise we need
to express it as a convex combination of vectors in canonical form. There are two ways in
which Yj can fail to be canonical: j may be at distance more than 2ℓ but less than 5ℓ from
the closest splash; in this case the new splash we create around j is too close to an already
existing one. The other possibility is that j is at distance less than 2ℓ from an existing
splash, in which case Yj contains a “doubly-conditioned” splash which is not an allowed
structure in a canonical solution.

Our idea is then to define a set S of “problematic vertices,” namely, the vertices in

23

the two close splashes, in the first case, or the vertices in the doubly-conditioned splash, in
the second case. Then we prove that1 that the restriction of Y to small (sub-linear) subset
S of vertices can be expressed as a distribution of valid integral vertex covers over S. We
would then like to use this fact to express y itself as a convex combination of solutions that
are integral over S and agreeing with y outside S; if we could achieve this goal, we would
have expressed y as a convex combination of vectors where the “problematic” coordinates
of y are fixed, and the other coordinate are as nice as they were in y.

Unfortunately, some complications arise. In order to express y as a convex com-
bination

∑
a λaya of vectors such that each ya is fixed in S, it is necessary that each ya

contains a splash around each of the newly fixed variables. The new splashes may them-
selves be at distance less than 5ℓ from each other, making the ya not canonical. To remedy
this problem, we define S (the set of vertices that will be fixed in the ya) via the following
process: we initialize S to the initial set of problematic vertices, then we add all vertices
that are at distance less than ℓ from S and that can be connected via a path of length ≤ 5ℓ
that does not pass through S, and so on. At the end of this process, we express y restricted
to S as a convex combination of integral covers, and we extend each of these integral covers
over S to a fractional solution over all vertices (by putting splashes around the vertices of
S) and so express y as a convex combination of solutions that, now, are canonical.

The argument works provided that S is of sublinear size. A careful accounting
guarantees that, if we want to show that our solution survives k rounds, we only need to
consider instances where S is of size O(k). Intuitively, this is due to the fact that each time
we make S larger we discover a short path of length t ≤ 5ℓ in the graph, and we add to
the subgraph induced by S t− 1 new vertices and t new edges. The subgraph induced by S
can only include at most |S|(1 + η) edges, for some very small η, so it cannot happen that
S grows too much at each step, because it is not possible to consistently add more edges
than vertices to the subgraph induced by S without causing a contradiction to the sparsity
condition.

Since this ensures that it takes Ω(n) rounds before the set of fixed vertices grows
to size γn, we can survive Ω(n) rounds.

2.3 Distributions of Vertex Covers in Trees

As a first (and useful) idealized model, suppose that our graph is a rooted tree.
Consider the following distribution over valid vertex covers:

• The root belongs to the cover with probability 1/2 + ε

• For every other vertex i, we make (independently) the following choice: if the parent
of i does not belong to the vertex cover, then i is in the cover with probability one;
if the parent of i is in the cover, then with probability 2ε/(12 + ε) we include i in the
cover, and with probability 1− 2ε/(12 + ε) we do not include i in the cover.

(The distribution is sampled by considering vertices in the order of a BFS, so that
we make a decision about a vertex only after having made a decision about the parent.)

1Assuming some added conditions on the fractional solution y, called saturation.

24

This is an instantiation of the Ising Model, about which much is known, but we
will need only very elementary facts about it. The proofs of these facts are contained in the
appendix.

A first observation is that each vertex has probability 1/2+ ε of being in the cover
and 1/2 − ε of not being in the cover. The second observation is that, if we condition on
the event that, say, the root is in the cover, then this condition affects very heavily the
vertices that are close to root, but this effect decreases exponentially with the distance.
In particular, for each vertex whose distance from the root is about 4ε−1 · (log ε−1), the
probability of the vertex being in the cover condition on the root being in the cover is
between 1/2 + ε − ε4 and 1/2 + ε + ε4, and the same is true conditioning on the root not
being in the cover.

This second observation will show that reasoning about this distribution is useful
to deal with graphs that are only locally like trees, that is, graphs of large girth. Before dis-
cussing this application, we slightly change the distribution so that, after a certain distance
from the root, there is no effect (rather than a small effect) if we condition on the root being
or not being in the cover. Hence the effect of conditioning on the root is explicitly cut-off
after a certain distance.

In particular, consider the following two distributions which sample from the vertex
covers of a tree rooted at a vertex i. The conditioning on the root only affects vertices upto
a distance ℓ = 8

ε log
1
ε of i.

Definition 15 For b ∈ {0, 1} we define a b-Splash around a vertex i as the distribution
which modifies vertices upto a distance of 2ℓ as follows

1. i = b

2. For every vertex upto distance ℓ (and at distance greater than ℓ+1), we independently
decide to include it with probability 1 if its parent is not in the vertex cover and with
probability 2ε/(12 + ε) if its parent is already in the vertex cover.

3. For u and v at distances ℓ, ℓ + 1 respectively, we include v with probability 1 if u is
not in the vertex cover and with probability

Pr[u = 1|i = b]−
(
1
2 − ε

)
Pr[u = 1|i = b]

otherwise.

Where u = 1 denotes the event u ∈ D for a random variable D (with distribution defined
by the splash) ranging over the vertex covers of the graph.

For the above to be well defined, we need Pr[u = 1|i = b] > 1/2− ε for a vertex u
at distance ℓ from i. Claim 16 shows that in fact Pr[u = 1|i = b] ∈ [1/2+ε−ε4, 1/2+ε+ε4]
for u at distance greater than ℓ/2 and hence the probability at distance ℓ is non-negative.

Claim 16 Consider a b-Splash around any vertex i such that all vertices upto distance ℓ
are labeled 1

2 + ε. Let j be a vertex such that d(i, j) ≤ ℓ. Then,

25

1. Pr[j = 1|i = 1, d(i, j) = k] = (1/2 + ε)

[
1 + (−1)k

(
1/2−ε
1/2+ε

)k+1
]
for 0 ≤ k ≤ ℓ

Pr[j = 1|i = 0, d(i, j) = k] = Pr[j = 1|i′ = 1, d(i′, j) = k − 1] for 1 ≤ k ≤ ℓ

2. |Pr[j = 1|i = b, d(i, j) = ℓ/2]− (1/2 + ε)| ≤ ε4

3. Pr[j = 1|i = 1, d(i, j) = k] +Pr[j = 1|i = 1, d(i, j) = k + 1] ≥ 1 + 4ε2 for 0 ≤ k ≤ ℓ

Note, in particular, that the probabilities are independent of i and j and depend
only on their distance d(i, j). Also, the difference of the probabilities from 1/2+ε decreases
exponentially with distance. The following claim shows that the vertices outside a radius
of ℓ from i are independent of whether or not i is in the cover.

Claim 17 If we pick a 0-Splash with probability 1/2 − ε and a 1-Splash with probability
1/2 + ε, then all vertices have probability 1/2 + ε. Furthermore, vertices at distance ℓ + 1
or more from i have weight 1/2 + ε in the 0-Splash as well as 1-Splash around i.

The vectors that appear in our argument may involve conditioning on a vertex i
that has value different from 1/2+ ε based on a splash distribution around a vertex r close
to it. The following claims allow us to compute Pr[i = 1, j = 1|r = b], the probability of two
vertices i, j being simultaneously present in a b-Splash at r, and also Pr[i = 0, j = 1|r = b],
which is the probability that j is present and i is not. We defer the proofs to the appendix.

Claim 18 Let i = v0, v1, . . . , vm−1, vm = j be the path to j, m ≤ ℓ, and let u be the vertex
on this path which is closest to r. Then

1. Pr[i = 1, j = 1|r = b] = Pr[u = 1|r = b] ·Pr[i = 1|u = 1] ·Pr[j = 1|u = 1]
+Pr[u = 0|r = b] ·Pr[i = 1|u = 0] ·Pr[j = 1|u = 0]

2. If Pr[u = 1|r = b] = 1/2 + ε, then Pr[i = 1, j = 1|r = b] = (1/2 + ε)Pr[j = 1|i = 1]

The first part of the above claim states that once we condition on u, then i and
j are independent. The second part states that if u is sufficiently far r, we can ignore r
completely and just compute the probability of j as determined by a splash around i.

Claim 19 Let i be a vertex and (j,k) be an edge in a b-Splash around r and let b′ ∈ {0, 1}.

Pr[i = b′, j = 1|r = b] +Pr[i = b′, k = 1|r = b] ≥ Pr[i = b′|r = b] · (1 + 4ε3)

The next claim allows us to treat vertices that are sufficiently far from each other
as almost independent in the dirtibution conditioned on r.

Claim 20 Let i and j be two vertices in a b-Splash around r, such that d(i, j) ≥ ℓ. Then∣∣Pr[i = b′, j = 1|r = b]−Pr[i = b′|r = b] ·Pr[j = 1|r = b]
∣∣ ≤ 2ε4

26

2.4 Distribution of Vertex Covers in Sparse Graphs

To reduce solutions with more complicated structure to simpler solutions, we will
need to show that if we look at a sufficiently small subgraph of our original graph obtained
in Lemma 10, then the more complicated solution can be expressed as a convex combination
of 0/1 solutions.

The following result is proved in [3].

Lemma 21 ([3]) Let η ≤ 2ε
3+10ε and let G = (V,E) be a graph such that

1. for each S ⊆ V , G(S) = (VG(S), EG(S)), then |EG(S)| ≤ (1 + η)|VG(S)|.

2. girth(G) ≥ 1+2ε
ε .

Then there exists a distribution over vertex covers on G such that each vertex belongs to the
vertex cover with probability 1/2 + ε.

We will need a slight generalization. Instead of requiring the solution to have the
value 1/2 + ε everywhere, we only require that the sum of the values on each edge should
be at least 1 + 2ε, if both of its endpoints are not already fixed.

Definition 22 We call a fractional solution y for a graph G ε-saturated if for each edge
(i, j) in graph G either:

• Both i and j are fixed and yi + yj ≥ 1 or,

• yi + yj ≥ 1 + 2ε.

We now show that the under the conditions of the previous lemma, every ε-
saturated solution can be written as a convex combination of vertex covers of the graph.

Lemma 23 Let η ≤ 2ε
3+10ε and let G = (V,E) be a graph such that

1. for each S ⊆ V , G(S) = (VG(S), EG(S)), then |EG(S)| ≤ (1 + η)|VG(S)|.

2. girth(G) ≥ 1+2ε
ε .

and let y be an ε-saturated solution. Then there exists a distribution over vertex covers on
G such that each vertex i belongs to the vertex cover with probability yi.

Proof: For the graph G, we will create a set of feasible fractional solutions y(k) ∈ {0, 1/2+
ε, 1}|V | such that y is a convex combination of these vectors.

We partition V into V0, V1/2+ε, and V1, as follows:

i ∈


V0 yi < 1/2 + ε
V1/2+ε yi = 1/2 + ε

V1 yi > 1/2 + ε

We define t(i) as follows:

27

t(i) =


1− yi

1/2+ε i ∈ V0

1 i ∈ V1/2+ε
yi−(1/2+ε)

1/2−ε i ∈ V1

We can order the t(i)’s: 0 ≤ t(i1) ≤ t(i2) ≤ · · · ≤ t(i|V |) ≤ 1. For each k : 1 ≤ k ≤
|V | we create the vector y(k) where

y(k)i =


0 i ∈ V0 and t(i) ≤ t(ik)
1 i ∈ V1 and t(i) ≤ t(ik)
1/2 + ε otherwise

We claim the distribution where y(k) occurs with probability tik − tik−1
gives us

y.
If i ∈ V0, then it will be 0 with probability ti and 1/2+ ε with probability 1− ti =

yi
1/2+ε . Therefore the probability that i is in the vertex cover is yi. If i ∈ V1, then it will be 1

with probability ti =
yi−(1/2+ε)

1/2−ε and 1/2+ε with probability 1−ti = 1− yi−(1/2+ε)
1/2−ε . Therefore

the probability that i is in the vertex cover is yi−(1/2+ε)
1/2−ε + (1/2 + ε)(1− yi−(1/2+ε)

1/2−ε) = yi. If

i ∈ V1/2+ε, then it is clear that the probability that i is in the vertex cover is 1/2 + ε.
Note that all the weights in each y(k) are 0, 1 or 1/2+ ε. It remains to show that

in each of these y(k) any edge which contains one vertex fixed to 0 has the other vertex
fixed to 1. First, note that all neighbors of vertices in V0 are in V1. It suffices to show that
if i and j are adjacent, i ∈ V1, j ∈ V0, that t(i) ≥ t(j). However

t(i)− t(j) =
yi − (1/2 + ε)

1/2− ε
− (1/2 + ε)− yj

1/2 + ε

=
(yi + yj)/2 + ε(yi − yj)− (1/2 + ε)

1/4− ε2

≥ (1 + 2ε)/2 + ε(yi − yj)− (1/2 + ε)

1/4− ε2

=
ε(yi − yj)

1/4− ε2
≥ 0

which concludes the proof of the lemma. �

2.5 The Main Lemma

We now define the type of solutions that will occur in our recursive argument.
Let G = (V,E) be an (α, δ, γ, η) graph with n vertices and degree at most d, as in

the assumption of Lemma 11. We define the constant C =
∑ℓ+1

i=1 d
i as the maximum number

of vertices within a distance ℓ from some vertex and D = 5ℓC as the maximum number of
vertices within distance ℓ of all the vertices in a path of length 5ℓ. Choose η = 1

3D . Note
that η depends on only ε and d. Also, we assume that n is large enough that the girth of

28

the graph is larger than various fixed constants throughout. We fix G for the rest of this
section.

Let R = γn
C+2D

Let G|S = (S,E|S) be the subgraph of G induced by S ⊆ V . For some set S ⊆ V ,
define NS(i) = {j : there exists path of length ℓ from i to j using only edges in E\E|S).

Definition 24 We say that a vector y = (y0, . . . , yn) is r-canonical if there exists a set
S ⊆ V such that:

• ∀j ∈ S yj ∈ {0, 1} and y|S is a vertex cover of G|S

• For every two vertices in S the shortest path between them that uses only vertices not
in S has length > 5ℓ. (Therefore if i, j ∈ S, i ̸= j, then NS(i) ∩NS(j) = ∅).

•
yi =

{
Pr[i = 1|j = yj] ∃j ∈ S s.t. i ∈ NS(j)

1/2 + ε o.w

• |S| ≤ rC + 2rD

• Let |S| = rC + kD (k ≤ 2r) and G|S = (S,E|S) is the subgraph of G induced by S,
then

|E|S | − |S| ≥ k − r

We call a set S as in Definition 24 a witness.

Claim 25 If y is an r-canonical vector then, y ∈ V C(G). Moreover, y is ε2-saturated.

Proof: This follows from the fact all edges are either internal to S, internal to some NS(i),
internal to V \∪i∈SN(i) or between some N(i) and V \∪i∈SN(i). In the first case, it follows
because y|S is a valid vertex cover having only 0/1 values. In the second because of the
fact that a N(i) is weighted according to a splash and Claim 16. In the third case, because
the weights are all 1/2+ ε. The final case just concerns the vertices at distance ℓ and ℓ+1
from the center of a splash and again follows from Claim 16. �

Lemma 11 follows from the above claim, the following result and the fact that
(1, 1/2 + ε, . . . , 1/2 + ε) is 0-canonical.

Lemma 26 Let y be an r-canonical solution, and r ≤ R. Then y is in NR−r(V C(G)).

Proof: We prove it by induction on R−r. By Claim 25, an R-canonical solution is feasible
for V C(G), and this gives the basis for the induction.

Let y be an r-canonical solution and let S be a witness to y. We show that there
is a protection matrix Y for y such that (Yi)/yi and (Y0 −Yi)/(y0 − yi) are distributions
over (r + 1)-canonical vectors for yi ̸= 0, y0. If yi = 0, then we take Yi = 0 which is in
Nk(V C(G)) for all k and Y0 −Yi = Y0 which is r-canonical.

The protection matrix is defined as follows. (When we talk about distance between
vertices, we mean distance via paths that do not go through any vertex in S.)

29

• Yi,0 = Y0,i = Yi,i = yi.

• If i and j are at distance greater than ℓ from each other, then Yi,j = yi · yj

• If i is at distance greater than 2ℓ from the closest vertex in S, and j is at distance at
most ℓ from i, then Yi,j is the probability that i and j both belongs to a vertex cover
selected according to a splash distribution around Yij = yiPr[j = 1|i = 1]

• If i is at distance at most 2ℓ from a vertex r ∈ S, and j is at distance at most ℓ
from i, then Yij is the probability that i and j both belong to a vertex cover selected
according to a b-Splash distribution around r i.e. Yij = Pr[i = 1, j = 1|r = b]

Claim 27 The matrix Y is symmetric.

Proof: If d(i, j) > ℓ, clearly Yij = Yji. There remain three additional cases.

• First, if both i and j are at distance greater than 2ℓ from any vertex in S, then
yi = yj = 1/2 + ε and also Pr[j = 1|i = 1] = Pr[j = 1|i = 1] as it depends only on
the distance by Claim 16, and hence Yij = Yji.

• Second, both i and j are at distance at most 2ℓ from any vertex in S. Both i and j
cannot be close to two different vertices in S because then d(i, j) ≤ ℓ would imply a
path of length at most 5ℓ between the two vertices which is not possible. Hence, in
this case, Yij = Yji = Pr[i = 1, j = 1|r = b], where r is the vertex in S close to both i
and j.

• Finally, if d(i, r) ≤ 2ℓ for some r ∈ S and d(j, r) > 2ℓ ∀r ∈ S, then the path from
i to j cannot come closer than distance ℓ + 1 to r. If l is the vertex on this path
closest to r, then we have P br (l) = 1/2 + ε and by Claim 18, Pr[i = 1, j = 1|r = b] =
(1/2 + ε)Pr[j = 1|i = 1] = yiPr[j = 1|i = 1] . Therefore, Yij = Pr[i = 1, j = 1|r =
b] = yiPr[j = 1|i = 1] = Yji.

�
Let us fix a vertex i, and consider the vectors z := Yi/yi and w := (Yi −Y0)/yi.

We will show that they are (convex combinations of) (r + 1)-canonical vectors. (If yi = 0
we do not need to analyse z, and if yi = 1 we do not need to analyse w.)

Note that z and w are same as y except for vertices that are within distance ℓ of
i.

Lemma 28 If y is an r-canonical solution and Y is the matrix as defined above, then
∀1 ≤ i ≤ n, the solutions z := Yi/yi and w := (Yi −Y0)/yi are ε

3-saturated

Proof: We first give the proof for z. Note that for d(i, j) > ℓ zj = yj and hence edges
as distance greater than ℓ from i are ε2 saturated because they were in y by Claim 25. If
d(i, r) > 2ℓ ∀r ∈ S then the distribution up to distance 2ℓ from i is same as a 1− Splash,
which is in fact ε2-saturated by Claim 16 and Claim 17.

30

Let i be within distance 2ℓ of r ∈ S and let (j, k) be an edge such that d(i, j) ≤ ℓ
or d(i, k) ≤ ℓ. If both j and k are within distance ℓ of i, then by Claim 19

Yij + Yik = Pr[i = 1, j = 1|r = b] +Pr[i = 1, k = 1|r = b]

≥ (1 + 4ε3)Pr[i = 1|r = b] = (1 + 4ε3)yi

and we are done. Finally, if d(i, j) = ℓ and d(i, k) = ℓ+ 1, then we know by Claim 20 that
|Pr[i = 1, k = 1|r = b]−Pr[i = 1|r = b]Pr[k = 1|r = b]| ≤ 2ε4. This gives

Yij + Yik = Pr[i = 1, j = 1|r = b] +Pr[i = 1|r = b]Pr[k = 1|r = b]

≥ Pr[i = 1, j = 1|r = b] +Pr[i = 1, k = 1|r = b]− 2ε4

≥ (1 + 4ε3)Pr[i = 1|r = b]− 2ε4 ≥ (1 + 3ε3)yi

using the fact that Pr[i = 1|r = b] is at least 2ε. We prove this for w similarly. �
We shall now express z and w as a convex combination of (r+1)-canonical vectors.

Claim 29 If i ∈ S, or if ∀r ∈ S, d(i, r) > 5ℓ, then z is r + 1 canonical.

Proof: If i ∈ S, then zk = yk (or wk = yk) for all k ∈ V by construction of protection
matrix. Because y is r-canonical z (or w) is also and this thus also (r + 1)-canonical.

If ∀r ∈ S, d(i, r) > 5ℓ, then it is easily seen that S ∪ {i} is a witness to z and w
being (r + 1)-canonical. �

If neither of these cases is true, we treat only z, because the same argument works
for w. We first define the subset of vertices which is fixed in these vectors.

Recall that for i ∈ S, NS(i) = {j : there exists path of length at most ℓ from i to j
using only edges in E\E|S). In addition let ∂NS(i) = {j : d(i, j) = ℓ+1 in the graph (V,E\E|S)}.
Also, let N ′

S(i) = NS(i) ∪ ∂NS(i).
Then we make the following definition:

Definition 30 For a fixed vertex i, we construct F ⊆ V \ S as follows:
Start with F = N ′

S(i). If there is a path P of length less that 5ℓ between any two
vertices in F ∪S that uses only edges in V \ (F ∪S), then F = F ∪P . Also, if P intersects
NS(j) for j ∈ S, then F = F ∪ P ∪ (N ′

S(j)\{j}).

Note that it follows from the above definition that for every j ∈ S, either NS(j)∩
F = ∅ or N ′

S(j) ⊆ F . Also if ∂F = {j ∈ F : j has neighbors in V \(S ∪F)}, then ∀j ∈ ∂F ,
zj = 1/2 + ε (because for every intersecting NS(j

′), we also included ∂NS(j
′)). We now

bound the size of F .

Claim 31 |F | ≤ C + (2r + 2− k)D, where |S| = rC + kD.

Proof: Every path added in the construction of F has length at most 5ℓ. Also, each vertex
in a path can be within distance ℓ of at most one j ∈ S. Thus, the number of vertices added
due to a path is at most 5ℓC = D. Thus, if p paths are added during the construction, then
|F | ≤ C + pD since C is the size of the N ′

S(i), which we start with.

31

Since the paths are added incrementally, it suffices to show that adding 2r+2− k
paths implies a contradiction. This would imply that p ≤ 2r + 2− k and hence the claim.
Let F ′ be F after addition of 2r + 2− k paths. Then

|E|S∪F ′ |
|S ∪ F ′|

= 1 +
|E|S∪F ′ | − |S ∪ F ′|

|S ∪ F ′|

Note that |E|S∪F ′ | − |S ∪ F ′| ≥ (k − r) + (2r + 2 − k) − 1, since |E|S | − |S| ≥ (k − r) to
begin with and addition of N ′

S(i), which is a tree adds one more vertex than edge (hence
contributing −1), while the addition of each path adds one more edge than vertex. For any
j ∈ S including the region NS(j) intersected by the path includes a tree of which at least
one vertex is already in F and can only contribute positively. This gives

|E|S∪F ′ |
|S ∪ F ′|

≥ 1 +
k − r + 2r − k + 1

|S|+ |F ′|
≥ 1 +

r + 1

rC + kD + C + (2r + 2− k)D
= 1 +

1

C + 2D
> 1 + η

since η = 1
3D < 1

C+2D . But this is a contradiction since |S ∪F ′| ≤ γn and hence |E|S∪F ′ | ≤
(1 + η)|S ∪ F ′|. �

Now, because r ≤ R = γn
C+2D , |S∪F | ≤ γn and we employ Lemma 23 to T = S∪F

using the fact that z is ε3-saturated.
We obtain vertex covers on S∪F , T 1, . . . , Tm such that λ1T

1+ . . .+λmT
m = z |T

where
∑m

l=1 λl = 1. Note that the values for the vertices in S are 0/1 and are hence
unchanged in all these solutions. To extend these solutions to fractional solutions over the
whole graph, we look at each vertex j on the boundary of the set F and change the values
of vertices upto a distance ℓ from it in V \ (S ∪F) according to a splash around j. We first
prove that all the vertices upto distance ℓ from the boundary of F have value 1/2 + ε in z.

Claim 32 For all j ∈ F , either

• all neighbors of j are in S ∪ F , or

• For all k ∈ NS∪F (j), zk = 1/2 + ε

Proof: Assume not, then for some j ∈ F which has some neighbor not in S ∪ F , there
exists k ∈ NS∪F (j) such that zk ̸= 1/2+ε. First, we show that it must be that zj = 1/2+ε.
The only elements of z which do not have weight 1/2 + ε are elements of NS(l) for l ∈ F
and NS(i). However, N ′

S(i) ⊆ F ∪ S so no element of NS(i) has a neighbor outside of F .
Similarly, if j ∈ NS(l), then because j ∈ F , it must be that N ′

S(l) ⊆ F ∪ S and thus j has
no neighbors outside S ∪ F .

So, say that k ̸= j, then k ̸∈ S ∪F . But there exists a path P of length ≤ ℓ which
avoids S ∪ F from j to k. Because y is r-canonical, and z is the same as y except possibly
at the vertices in NS(i), it must be that k ∈ NS(i) or k ∈ NS(j

′) for some j′ ∈ S. But,
it cannot be that k ∈ NS(i) because NS(i) ⊆ F . Also if k ∈ NS(j

′) for some j′ ∈ S, then
there is a path from j to j′ length at most 2ℓ and so either k must be in S ∪ F or j = j′.
The former cannot be true by assumption. The later cannot be true because j ∈ F which
is disjoint from S. �

32

Create y(l) as follows.

y
(l)
k =

{
Pr
[
k = 1|j = y

(l)
j

]
k ∈ NS∪F (j) for some j ∈ F

y
(l)
k = zi o. w.

First note that this is well defined, because if any vertex were in NS∪F (j) and
NS∪F (j

′) for j, j′ ∈ F , j ̸= j′, then there would be path between two vertices in F of length
2ℓ which does not go through S ∪ F .

We wish to show that λ1y
(1), . . . , λmy

(m) = z. Consider first some k ∈ NS∪F (j)

for some j ∈ F . First note that λ1y
(1)
j + . . .+ λmy

(m)
j = zj . By Claim 32 if k ̸= j, then it

must be that zj = zk = 1/2 + ε. Therefore by Claim 17

λ1y
(1)
k + . . .+ λmy

(m)
k = zj Pr[k = 1|j = 1] + (1− zj)Pr[k = 1|j = 0] = 1/2 + ε = zk

If k ̸∈ ∪j∈FNS∪F (j), then y
(l)
k = zk for all k, and so λ1y

(1)
k , . . . , λmy

(m)
k = zk. We now must

show that for each k, y(k) is an (r + 1)-canonical solution. We show that T = S ∪ F is a
witness for y(k).

Since the solution T (k) given by Lemma 23 is a vertex cover y
(k)
|T = T (k) is a vertex

cover for T . Also, by construction of F , there is no path of length less than 5ℓ between
any vertices of S ∪ F using only vertices outside S ∪ F . By Claim 31 |T | = |S| + |F | ≤
rC + kD + C + (2r + 2 − k)D = (r + 1)C + 2(r + 1)D. If the number of paths added
in constructing F is p, then |T | ≤ (r + 1)C + (k + p)D. Also, as argued in Claim 31,
|E|S∪F | − |S ∪ F | ≥ (k − r) + p− 1 = (k + p)− (r + 1).

Finally, we need to show that y
(k)
j = Pr[j = 1|j′ = yj′] if j ∈ NS∪F (j

′) and 1/2+ε

otherwise. Let y
(k)
j ̸= 1/2 + ε. Then either j ∈ NS∪F (j

′) for some j′ ∈ F (since these

vertices were set according to a splash pattern while creating y(k)) and we are done, or
zk ̸= 1/2 + ε. However, z = Yi/yi differs from y only in NS(i). Therefore, zk ̸= 1/2 + ε
in turn implies j ∈ NS(i) and hence j ∈ F , or yj ̸= 1/2 + ε. To finish off, we note that
yj ̸= 1/2+ ε would mean j ∈ NS(j

′) for some j′ ∈ S (by assumption on S). Since NS(j
′) is

either contained in or disjoint with F , we must have j ∈ S∪F or j ∈ NS∪F (j
′) respectively.

Since each y(k) is an (r + 1)-canonical solution, by our inductive hypothesis ∀1 ≤
k ≤ m y(k) ∈ NR−r−1(V C(G)) and hence z ∈ NR−r−1(V C(G)). Using a similar argument
for show w, we get that y ∈ NR−r(V C(G)). This completes the proof of Lemma 26. �

2.6 Lower bounds for MaxCut

Let G = (V,E) be a graph with n vertices and m edges. We prove a 1/2 + ζ
integrality gap for Ω(n) rounds of LS on MaxCut.

The solutions we define for MaxCut are simple extensions of vertex cover solutions.
For a vector y ∈ Rn+1, we define an extension Ext(y) as the vector u ∈ Rn+m+1 such that,
ui = yi ∀0 ≤ i ≤ n and ue = 2y0 − yi − yj for e = (i, j) ∈ E. Also, we define Res(u) as the
inverse operation i.e. the projection of the first n+ 1 coordinates of u. It is easy to verify
that if y ∈ V C(G) then Ext(y) ∈ MC(G). Notice that with R = γn

C+D as defined in the
previous section, it is sufficient to prove the following

33

Lemma 33 If y ∈ Rn+1 is a 2r-canonical solution for VC(G), then Ext(y) ∈ NR/2−r(MC(G)).

The integrality gap follows because y = (1, 1/2+ ε, . . . , 1/2+ ε) is 0-canonical and
for u = Ext(y),

∑
e∈E ue = (1− 2ε)m.

Proof: We proceed by induction on R/2 − r. The base case follows because if y is an
R-canonical solution, then y ∈ V C(G) which implies Ext(y) ∈ MC(G) = N0(MC(G)).
For the inductive step, let y be an 2r-canonical solution and let u = Ext(y). We create a
protection matrix U , such that ∀1 ≤ i ≤ n and ∀e ∈ E, Res(Ui), Res(Ue), Res(U0 −Ui)
and Res(U0−Ue) can be expressed as convex combinations of (2r+2)-canonical solutions.
This suffices because for a vector u if Res(u) = λ1u

(1)+. . .+λmu
(m) then u = Ext(λ1u

(1))+
. . . + Ext(λmu

(m)), since the coordinates of Ext(v) are affine functions of the coordinates
of v.

Let Y be the protection matrix of a 2r-canonical solution as defined in the previous
section. We define the matrix U as

Ui = Ext(Yi) ∀0 ≤ i ≤ n

Ue = Ext(2Y0 − (Yi +Yj)) ∀e = (i, j) ∈ E

We can write out the entries of U as follows, showing that it is symmetric.

Ui,j = Yij 0 ≤ i, j ≤ n

Ui,e = Ue,i = 2Yi0 − Yij − Yik 0 ≤ i ≤ n, e = (j, k) ∈ E

Ue1,e2 = 4Y00 − 2(Yi0 + Yj0 + Yk0 + Yl0) + (Yik + Yjk + Yil + Yjl) e1 = (i, j), e2 = (k, l) ∈ E

Note that for i ∈ V and e = (j, k) ∈ E, Res(Ui) = Yi, Res(U0 − Ui) = Y0 − Yi and
Res(Ue) = Y0−Yj+Y0−Yk, which are convex combinations of (2r+1)-canonical solutions
as proved in the previous section. It only remains to tackle Res(U0−Ue) = Yj+Yk−Y0.
We first prove that it is ε3-saturated.

Claim 34 If Y is the protection matrix of a 2r-canonical solution and (i, j), (u, v) are two
edges, then

(Yi +Yj −Y0)u
yi + yj − y0

+
(Yi +Yj −Y0)v
yi + yj − y0

≥ 1 + 4ε3

Proof: Without loss of generality, we can assume that j and u are the closer endpoints of
the edges (i, j) and (u, v). We first handle the case when d(j, u) > ℓ. Then Yiu = yiyu, Yiv =
yiyv, Yju = yjyu and Yjv = yjyv. Hence, the LHS is yu + yv, which is greater than 1 + 2ε2

since a 2r-canonical solution is ε2 saturated.
When d(j, u) ≤ ℓ, all the four vertices are within distance ℓ + 2 of each other.

Now, in any subgraph H of diameter 3ℓ, we may think of the restriction of y to H as the
probabilities of the vertices being present in a distribution over vertex covers of H. Notice
that if y is a 2r-canonical solution, H may contain vertices close to (within distance ℓ of)
at most one fixed vertex. In case there is such a vertex r, ∀i ∈ H yi = Pr[i = 1|r = 1]. If
there is no such vertex, all vertices in H have yi = 1/2+ ε and we can these as probabilities
for a distribution which chooses a 1-splash with probability 1/2 + ε and 0-splash with
probability 1/2 − ε around any arbitrary vertex in H (Claim 17). Also, we can interpret
Ypq as Pr[p = 1, q = 1] for the same distribution as above.

34

Consider the distribution over the subgraph within a radius ℓ+2 from i. We first
note that since (Y0 − Yi)/(1 − yi) is a valid vertex cover solution and (Y0 − Yi)i = 0,
(Y0 − Yi)j/(1 − yi) = 1 which gives yi + yj − 1 = Yij . Using this and the fact that
Pr[(i = 1) ∨ (j = 1)|u = 1] = 1, we have

(Yi +Yj −Y0)u
yi + yj − y0

=
yu(Pr[i = 1|u = 1] +Pr[j = 1|u = 1]− 1)

Pr[i = 1, j = 1]

=
yuPr[(i = 1) ∧ (j = 1)|u = 1]

Pr[i = 1, j = 1]

= Pr[u = 1|i = 1, j = 1]

Therefore, we get

(Yi +Yj −Y0)u
yi + yj − y0

+
(Yi +Yj −Y0)v
yi + yj − y0

− 1 = Pr[u = 1|i = 1, j = 1] +Pr[v = 1|i = 1, j = 1]− 1

= Pr[(u = 1) ∧ (v = 1)|i = 1, j = 1]

= Pr[(u = 1) ∧ (v = 1)|j = 1]

The last equality following from the fact that it is sufficient to condition on the closer of
the two vertices i and j. Also,

Pr[(u = 1) ∧ (v = 1)|j = 1] = Pr[u = 1|j = 1] +Pr[v = 1|j = 1]− 1

=
Yuj
yj

+
Yvj
yj

− 1

≥ 4ε3 (by Lemma 28)

�
We now want to express w = (Yi+Yj−Y0)/(yi+yj−1) as a convex combination

of (2r + 2)-canonical solutions. Let S be the witness to y being 2r-canonical. We now find
a set T ⊇ S such that w is a convex combination of solutions w(1), . . . ,w(m) which take
0/1 values over T and which are (2r + 2)-canonical, with T being the witness. There are
two cases:

Case 1: i /∈ S and ∃r ∈ S s.t. d(i, r) ≤ 5ℓ (with d(i, r) being length of the shortest
path not passing through S)
By the proof in the previous section, we know that the vector z = Yi/yi is a convex
combination of (2r + 1)-canonical solutions with a set S1 being the witness for all of them.
Also, j ∈ S1 as it includes every vertex within distance ℓ of i. We take T = S1.

Case 2: i ∈ S or d(i, r) > 5ℓ ∀r ∈ S
In this case z = Yi/yi is (2r + 1)-canonical with S ∪ {i} the witness. We now look at the
protection matrix Z for z and consider the vector z′ = Zj/zj . This is a convex combination
of (2r + 2)-canonical solutions having a common witness S2 which contains S ∪ {i}. Take
T = S2.

In both cases |T | ≤ (2r + 2)C + (4r + 4)D. We now employ Lemma 23 to T to
obtain vertex covers T 1, . . . , Tm on T such that λ1T

1+ . . .+λmT
m = w|T with

∑m
l=1 λl = 1.

35

We can extend them to create (2r+2)-canonical solutions w(1), . . . ,w(m) as in the previous
section. By the arguments in the previous section, all these have T as the witness. This
completes the proof. �

2.A Proof of Lemma 10

Lemma 35 For every 0 < α < 1/125, η > 0, there exists a d = d(α) ∈ N, δ, γ > 0,
and N ∈ N such that for n ≥ N there exists an (α, δ, γ, η) graph with max cut less than
1
2 |E|(1+α) and maximum degree at most d on n vertices. Here d(α) is an explicit function
that depends only on α.

We use the following lemma from [3]

Lemma 36 For every 1 < α < 1/250, η > 0, there exists a δ, γ > 0 such that a ran-
dom graph from the Gn,p distribution where p = α−2/n has the following properties with
probability 1− o(n):

• after O(
√
n) edges are removed, the girth is δ log n.

• the minimum vertex cover contains at least (1− α)n vertices

• every induced subgraph on a subset S of at most γn vertices has at most (1 + η)|S|
edges.

Proof:[of Lemma 35] Given α, η > 0, set α′ = α/2. Use Lemma 36 with inputs α′, η to
randomly pick a graph on n vertices. Set p = (α′)−2/n as in Lemma 36. Now, with high
probability, we can remove set of edges R to obtain a (α/2, δ, γ, η)-graph on n vertices. Do
not yet remove edges.

Also, it is well known that w.h.p. the max cut in a random Gn,p has size less than
1
2 |E|(1+1/

√
d), where d is the average degree. The average degree of a vertex in this model

is λ = pn = 4α−2. Hence the size of the max cut is at most 1
2 |E|(1+α/2). The probability

that some fixed vertex v0 has degree greater than 2λ is less than exp(−λ/3) by a Chernoff
bound. So by Markov’s inequality the probability that more than exp(−λ/6)n vertices have
degree greater than 2λ is at most exp(−λ/6) ≤ exp(−10000).

If this is the case, then first remove the edge set R. By removing edges we could
only decrease the maximum degree. Then simply remove all vertices with degree more
than 2λ from the graph and any other subset to obtain a graph G′ with n(1− exp(−d/6))
vertices. Now, it is easy to check that G′ is a (α, δ, γ, η)-graph with maximum degree
at most d(α) = 2λ = 8/α2. Removing the edges and vertices changes the max cut to
1
2 |E|(1 + α/2 + o(1)) < 1

2 |E|(1 + α). �

2.B Proofs of claims about splashes

We use the following notation for the proofs in this appendix. We denote Pr[i =
1|r = b] and Pr[i = 1, j = 1|r = b] by P br (i) and P

b
r (i, j) respectively. Pr[i = 0|r = b] and

36

Pr[i = 0, j = 1|r = b] are expressed as 1− P br (i) and P
b
r (j)− P br (i, j) respectively. Also, in

cases where Pr[j = 1|i = b] depends only on d(i, j), we denote it by Qb(d(i, j)).

Claim 37 Consider a b-Splash around a vertex i such that all vertices upto distance ℓ are
labeled 1

2 + ε. Then,

1. Q1(k) = (1/2 + ε)

[
1 + (−1)k

(
1/2−ε
1/2+ε

)k+1
]
for 0 ≤ k ≤ ℓ

Q0(0) = 0 and Q0(k) = Q1(k − 1) for 1 ≤ k ≤ ℓ

2.
∣∣Q0(ℓ/2)− (1/2 + ε)

∣∣ ≤ ε4

3. ∀0 ≤ k ≤ ℓ, Q1(k) +Q1(k + 1) ≥ 1 + 4ε2

Proof: We prove the formula for Q1(k) by induction. For k = 0,

(1/2 + ε)

[
1 + (−1)k

(
1/2− ε

1/2 + ε

)k+1
]
= (1/2 + ε)

[
1

1/2 + ε

]
= 1 = Q1(0)

Assuming the correctness of the formula for k = n, we start with the recurrence

Q1(n+ 1) = (1−Q1(n)) +

(
2ε

1/2 + ε

)
Q1(n) = 1−

(
1/2− ε

1/2 + ε

)
Q1(n)

since the vertex at distance n (in the same path) might not be present with probability
1 − Q1(n) in which case the one at distance n + 1 is present with probability 1, and it is
present with probability Q1(n) in which case the one at distance n + 1 is included with

probability
(

2ε
1/2+ε

)
. Therefore, we have

Q1(n+ 1) = 1−
(
1/2− ε

1/2 + ε

)
(1/2 + ε)

[
1 + (−1)n

(
1/2− ε

1/2 + ε

)n+1
]

= 1− (1/2− ε) + (−1)n+1 (1/2 + ε)

(
1/2− ε

1/2 + ε

)n+2

= (1/2 + ε)

[
1 + (−1)n+1

(
1/2− ε

1/2 + ε

)n+2
]

Also note that if i is labeled 0, then all its neighbors must be set to 1. Hence
Q0(0) = 0 and Q0(1) = 1. The rest of the induction works exactly as above.

Note that∣∣Q0(ℓ/2)− (1/2 + ε)
∣∣ = (1/2 + ε)

(
1/2− ε

1/2 + ε

)ℓ/2

< (1− 2ε)ℓ/2 = (1− 2ε)(
4
ε log 1

ε) ≤ ε4

Finally for 0 ≤ k < ℓ,

Q1(k) +Q1(k + 1) = (1/2 + ε)

[
2 + (−1)k

(
1/2− ε

1/2 + ε

)k+1(
1− 1/2− ε

1/2 + ε

)]

= (1/2 + ε)

[
2 + (−1)k

(
1/2− ε

1/2 + ε

)k+1(
2ε

1/2 + ε

)]

≥ (1/2 + ε)

[
2−

(
2ε

1/2 + ε

)(
1/2− ε

1/2 + ε

)2
]
= 1 + 2ε− 2ε

(
1/2− ε

1/2 + ε

)2

≥ 1 + 4ε2

37

The claim for k = ℓ follows from part 2 and the fact that Q1(d) = 1/2 + ε for d > ℓ. �

Claim 38 If we pick a 0-Splash with probability 1/2 − ε and a 1-Splash with probability
1/2 + ε, then all vertices have probability 1/2 + ε. Furthermore, vertices at distance ℓ + 1
or more from i have weight 1/2 + ε in the 0-Splash as well as 1-Splash around i.

Proof: We prove it by induction on the length of the path from i to j. Let Pi(j) =
(1/2− ε)P 0

i (j)+ (1/2+ ε)P 1
i (j). The base case, when the path is of length 0 is clear. If the

path between i and j is i = v0, v1, . . . , vm−1, vm = j, then there are two cases. In the first
case vm−1 and vm are both within distance ℓ of i. Then

Pi(j) = 1− (1− 2ε

1/2 + ε
)Pi(vm−1)

because vm is only excluded with probability 2ε
1/2+ε when vm−1 is present and this event is

independent of whether or not each vertex i = v0, v1, . . . , vm−1 is included in the cover. By
induction, Pi(vm−1) = 1/2 + ε, and so 1− (1− 2ε

1/2+ε)Pi(vm−1) = 1/2 + ε.
In the second case vm−1 is at distance ℓ. However,

P bi (j) = 1− (1− P bi (vm−1)− (1/2− ε)

P bi (vm−1)
)P bi (vm−1) = 1/2 + ε

because the probability vm−1 is included in a b-Splash is P bi (vm−1) and the probability of

including vm when vm−1 is present is
P b
i (vm−1)−(1/2−ε)

P b
i (vm−1)

. �

Claim 39 Let i = v0, v1, . . . , vm−1, vm = j be the path to j, m ≤ ℓ, and let u be the vertex
on this path which is closest to r. Then

1. P br (i, j) = P br (u) · P 1
u (i)P

1
u (j) + [1− P br (u)] · P 0

u (i)P
0
u (j)

2. If P br (u) = 1/2 + ε, then P br (i, j) = (1/2 + ε)P 1
i (j)

Proof:

1. Let E be the event that both i and j are in a vertex cover and r = b. Then P br (i, j) =
Pr[E | r = b]. We can also condition on whether u is in the vertex cover.

P br (i, j) = Pr[u ∈ V C | r = b] · Pr[E | r = b and u ∈ V C]

+ Pr[u /∈ V C | r = b] · Pr[E | r = b and u /∈ V C]

But Pr[E | r = b and u ∈ V C] = Pr[E | u ∈ V C]. Because given that u is in or out of
the vertex cover, we can determine if i and j are in the vertex cover by following the
edges from u to each of them. But this information is independent of whether r is in
the vertex cover. For the same reason Pr[E | r = b and u ∈ V C] = Pr[E | u ∈ V C].
Therefore

P br (i, j) = P br (u) · P 1
u (i)P

1
u (j) + [1− P br (u)]Ṗ

0
u (i)P

0
u (j)

as claimed.

38

2. The probability that i and j are in a vertex cover (assume r is not yet fixed) is just
(1/2 + ε)P 1

i (j). Now, we can just condition on l, and rewrite this as

Pr[u ∈ V C] · P 1
u (i, j) + Pr[u ̸∈ V C] · P 0

u (i, j)

We can also not condition on r = b because once l is fixed, that does not affect
anything, and in addition, Pr[u ∈ V C] = 1/2 + ε = P br (u). So this becomes

P br (u) · P 1
u (i, j) + [1− P br (u)] · P 0

u (i, j)

Finally, if we note that P bu(i, j) = P bu(i)P
b
u(j), we see that we get

P br (l) · P 1
u (i)P

1
u (j) + [1− P br (u)] · P 0

u (i)P
0
u (j)

which by 1) is simply P br (i, j) as claimed.

�

Claim 40 Let i be a vertex and (j,k) be an edge in a b-Splash around r. Then if j and k
are not already fixed

P br (i, j) + P br (i, k) ≥ P br (i)(1 + 4ε3)

and
[P br (j)− P br (i, j)] + [P br (k)− P br (i, k)] ≥ (1− P br (i))(1 + 4ε3)

Proof: We consider separately the cases when (j, k) lies on or outside the path between r
and i.

Case 1: (j, k) lies outside the path connecting r and i
Without loss of generality, let j be the vertex closer to the path from r to i. Let u be the
vertex in the path closest to j. Then by Claim 39

P br (i, j) = P br (u) · P 1
u (i)P

1
u (j) + [1− P br (u)] · P 0

u (i)P
0
u (j)

P br (i, k) = P br (u) · P 1
u (i)P

1
u (k) + [1− P br (u)] · P 0

u (i)P
0
u (k)

Therefore,

P br (i, j) + P br (i, k) = P br (u)P
1
l (i) ·

[
P 1
u (j) + P 1

u (k)
]
+ [1− P br (u)]P

0
u (i) ·

[
P 0
u (j) + P 0

u (k)
]

Also by Claim 37 we know that P bu(j) + P bu(k) ≥ 1 + 4ε2, if j and k are not already fixed,
which gives

P br (i, j) + P br (i, k) ≥
[
P br (u)P

1
u (i) + [1− P br (u)]P

0
u (i)

]
(1 + 4ε2) = P br (u)(1 + 4ε2)

39

Case 2: (j, k) lies on the path connecting r and i
Let j be the vertex closer to r. Also, let α = P br (j) and β = P 1

j (i). Then,

P br (i, j) = P br (j)P
1
j (i) = αβ

P br (i, k) = P br (k)P
1
k (i) =

[
1− α+

2ε

1/2 + ε
α

] [
(1− β)

1/2 + ε

1/2− ε

]
= (1− α)(1− β)

(
1/2 + ε

1/2− ε

)
+ α(1− β)

(
2ε

1/2− ε

)
where the second equation follows from the recurrenceQ1(n+1) = (1−Q1(n))+

(
2ε

1/2+ε

)
Q1(n)

used in Claim 37. Also,

P br (i) = P br (j)P
1
j (i) + (1− P br (j))P

0
j (i) = P br (j)P

1
j (i) + (1− P br (j))P

1
k (i)

= αβ + (1− α)(1− β)

(
1/2 + ε

1/2− ε

)
This gives

P br (i, j) + P br (i, j)

P br (i)
= 1 +

α(1− β)
(

2ε
1/2−ε

)
αβ + (1− α)(1− β)

(
1/2+ε
1/2−ε

) ≥ 1 + 4ε3

since α, (1 − β) > 2ε (all probabilities in a splash are at least 2ε, unless one is 0 and the
other is 1, but then both are fixed).

The proof of the second statement follows similarly. �

Claim 41 Let i and j be two vertices in a b-Splash around r, such that d(i, j) ≥ ℓ. Then∣∣∣P br (i, j)− P br (i)P
b
r (j)

∣∣∣ ≤ 2ε4

and ∣∣∣[P br (j)− P br (i, j)]− (1− P br (i))P
b
r (j)

∣∣∣ ≤ 2ε4

Proof: Let u be the vertex closest to r on the path from i to j. Without loss of generality,
assume that d(i, u) ≥ ℓ/2. Then∣∣∣P br (i, j)− P br (i)P

b
r (j)

∣∣∣ = ∣∣∣P br (u) · P 1
u (i)P

1
u (j) + [1− P br (u)] · P 0

u (i)P
0
u (j)− P br (i)P

b
r (j)

∣∣∣
≤
∣∣∣(1/2 + ε)

[
P br (u) · P 1

u (j) + [1− P br (u)] · P 0
u (j)

]
− P br (i)P

b
r (j)

∣∣∣+ ε4

=
∣∣∣(1/2 + ε)P br (j)− P br (i)P

b
r (j)

∣∣∣+ ε4 ≤ 2ε4

where the two inequalities follow from the fact that |P br (i)− (1/2 + ε)| ≤ ε4 if d(i, r) ≥ ℓ/2
as proved in Claim 37.

The second statement can be proven in a similar fashion. �

40

Chapter 3

Linear Round Integrality Gaps for
Lasserre

Background Results Sufficiently dense random k-CSP formulae are far from being sat-
isfiable as the next proposition states.

Proposition 42 For any δ > 0, with probability 1− o(1), if φ is a random k-CSP-P with
∆n clauses where ∆ ≥ ln 2

2δ2
+ 1, at most a r(P) + δ fraction of the clauses of φ can be

simultaneously satisfied.

Proposition 42 is well known in the literature, we provide a proof in the appendix
for completion.

Definition 43 Width-w resolution on an XOR formula φ, successively builds up new
clauses by deriving a new clause

⊕
i∈I∆J xi = b ⊕ b′ whenever the symmetric difference

|I∆J | ≤ w and the clauses
⊕

i∈I xi = b and
⊕

i∈I xi = b′ had either already been derived or
belong to φ.

Width-w resolution proves a formula φ unsatisfiable if it derives the clause 0 = 1.
The following theorem shows that for random 3-XOR formula, even for quite large w,
width-w resolution fails to produce a contradiction.

Theorem 44 For any k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2−1, there exists some constant
α > 0, such that if φ is a random k-XOR formula with density dnε, then with probability

1 − o(1) φ cannot be disproved by width αn
1− ε

k/2−γ−1 resolution nor can any variable be
resolved to true or false. Furthermore, this is true even if the parity sign (whether the
predicate is parity or its negation) of each clause is adversatively chosen.

Wigderson and Ben-Sasson [6] show that a variant of Theorem 44 holds for k-SAT
formula. The proof of [6] extends to show Theorem 44 using standard techniques. We
include a proof in the appendix for completeness.

41

3.1 k-CSPs over XOR-Implied Predicates

We now present the main theorem of the chapter.

Theorem 45 Let P be a XOR-implied predicate. Then for every δ, γ, d > 0 and 0 ≤ ε <
k/2 − 1 (such that if ε = 0, then d ≥ ln 2

2δ2
+ 1) there exists some constant α ≥ 0, such that

with probability 1 − o(1), if φ is a random k-CSP-P with ∆n clauses where ∆ = dnε both
the following are true:

1. at most a r(P) + δ fraction of the clauses of φ can be simultaneously satisfied.

2. The αn
1− ε

k/2−1−γ level of the Lasserre hierarchy permits a feasible solution.

This theorem implies integrality gaps for XOR-implied k-CSPs because the Lasserre
relaxation cannot refute that all clauses can be simultaneously satisfied, but, in fact, at
most r(P)+δ clauses can be simultaneously satisfied. Notice that an algorithm that simply
guesses a random assignment would expect to satisfy an r(P) fraction of clauses in expecta-
tion. In particular this theorem shows that with high probability a random k-XOR formula
with n variables and dn clauses, where d is any constant, cannot be refuted by Ω(n) rounds
of Lasserre which gives an integrality gap of 1/2+ δ for Ω(n) rounds of Lasserre for Max-k-
XOR by setting δ = δ; d ≥ ln 2

2δ2
+ 1; ε = 0; and γ = 1

2 . Also, this theorem shows that with
high probability a random 3-CNF formula cannot be refuted by Ω(n) rounds of Lasserre
which gives an integrality gap of 7/8 + δ for Ω(n) rounds of Lasserre for Max-k-SAT.

Theorem 45 follows almost immediately from Theorem 44, Proposition 42, and the
following Lemma.

Lemma 46 (Main Lemma) If a k-XOR formula φ cannot be disproved by width-w reso-
lution, then the w

2 th round of the Lasserre hierarchy permits a feasible solution.

Proof:[of Theorem 45] Fix δ, γ, d, ε,P as allowed in theorem statement, and let φ be a
random k-CSP-P formula with ∆n clauses where ∆ = dnε. By Proposition 42, 1) holds
with probability 1− o(1) because for sufficiently large n, ∆ = dnε > ln 2

2δ2
+ 1.

We can write φ as a k-XOR formula φXOR so that φXOR ⇒ φ. Now the Lasserre
relaxation for φXOR is strictly tighter than that for φ. Let α′ be as guaranteed in Theorem 44
using k, d, γ, and ε as inputs so that by Theorem 44 we know that with probability 1− o(1)
it is the case that φXOR cannot be disproved by width-α′n

1− ε
k/2−γ−1 resolution. Let α = α′

2 .

By Lemma 46, φXOR cannot be proven unsatisfiable by α′

2 n
1− ε

k/2−γ−1 = αn
1− ε

k/2−γ−1 rounds
of Lasserre. Because the Lasserre relaxation for φXOR is tighter than that for φ it must be
the case that φ cannot be proven unsatisfiable by Lasserre either. �

Lemma 46 is the main original technical contribution of this work. In the rest of
this section we first provide some intuition for the proof of Lemma 46 and then provide its
proof.

For a first attempt to prove the lemma we can observe that for any particular set
I of at most w/2 variables, we can construct vectors for all f as follows: 1) Run bounded

42

width resolution to derive a set of constraints that any satisfying assignment must satisfy.
2) Consider the set SATI where

SATI =

{
xI ∈ xI :

xI satisfies all the constraints derived by
the resolution whose support is contained in I

}
Randomize over SATI and construct the vectors as we saw in Equation 1.11. That is each
coordinate of vfI will correspond to an element of xI ∈ SATI , and will be

√
1/|SATI | if

fI(xI) = 1 and 0 if fI(xI) = 0. These vectors will satisfy the Lasserre Equations 1.7, 1.8,
and 1.10; however, these vectors will fail miserably to satisfy Equation 1.9 of the Lasserre
constraints. We have set up valid local distributions; however, these distribution do not
patch together consistently. The problem is that when the take the dot product of vxI and
vxJ , the values in each coordinate mean something completely different.

To remedy this misalignment we design a space of equivalence classes of characters
of weight at most w/2 variables which we will use to index the coordinates of each vector.
We will say that χI ∼ χJ if for all assignments that satisfy the derived resolution clauses,
χI determines χJ and vice versa. For example, if φ contained the clause x1 ⊕ x2 ⊕ x3 = 0
then χ{1,2} ∼ χ{3} because whatever x1 ⊕ x2 is, x3 must be the opposite. With some ∼
equivalent characters, fixing one character automatically fixes the ∼ equivalent character
to the opposite value (as above). With other ∼ equivalent character, fixing one character
automatically fixes the ∼ equivalent character to the same value. Using this fact, we can
split each equivalence class of ∼ equivalent character into two parts, so that the ∼ equivalent
clauses in each part always fix each other to the same value, and ∼ equivalent clauses in
opposite parts always fix each other to the opposite value. We can arbitrarily label one part
+ and the other −.

The vector corresponding to a function f will have in each coordinate (which
corresponds to an an equivalence class of characters) the sum of the fourier coefficients of f
of characters corresponding the characters in this equivalence class. (Each coefficient will be
multiplied by ±1 depending on its label). The intuition here is that characters of the same
equivalence class are completely dependant on each other, but non-equivalent characters
are completely independent. Note that only some of the coordinates are non-zero.

This relates to the aforementioned construction which satisfies equations 1.7, 1.8,
and 1.10 because “locally” we have just taken a rotation! If we project onto only the
relevant characters, then the mapping of our previously constructed vectors (that failed
to satisfy Equation 1.9) to these new vectors is simply a rotation. This implies that all
the Lasserre equations that were previously satisfied will still be satisfied (because all the
irrelevant characters are set to 0 and thus will not affect the dot product).

For each I ⊆ [n], |I| ≤ w
2 , there is a bijection between the set SATI and the

equivalence classes of χJ where J ⊆ I, because, intuitively, each time resolution derives a
new relation, the dimension of each of these sets is reduced by 1.

In particular the vectors vf=xI
(I)

for each xI ∈ SATI still form an orthogonal basis.

And if you take the preimage of the vector v0 (I is still fixed) it corresponds to randomizing
over the xI ∈ SATI .

One can develop this intuition into a proof by showing that if f ∈ FI and g ∈ FJ

then vf and vg behave well by projecting onto the classes containing the characters involving

43

only variables of I ∪J (these are the only possible non-zero coordinates), and rotating back
into the basis of |SATI∪J |. A previous proof follows this intuition (see [24]). Here we present
an easier proof of Lemma 46.
Proof:[Lemma 46]
Construction of Vectors
We first define a set E which later will be used to index the coordinates of the vectors. Let
φ be a k-XOR formula that has no width-w resolution. Let C be the collection of clauses
generated by width-w resolution running on φ. Let Lw be all the characters of weight at
most w. Let F ⊆ Lw be the collection of linear functions cooresponding to the clauses of
C. That is if

⊕
i∈I xi = bi ∈ C then χI ∈ F .

Now consider the set E = L
w
2 /F . That is we partition L

w
2 into equivalence classes

where
χI ∼F χJ ⇔ χI∆J ∈ F

For each equivalence class [χI] ∈ E , we arbitrarily choose some χI0 ∈ [χI] (for
notational convenience, we always choose χ∅ = χ∅0 ∈ [χ∅]). We define a function π :
L|w/2| ∪ F → {+1,−1} such that

π(χI) =

{
+1

⊕
i∈I∆I0 xi = 0 ∈ C

−1
⊕

i∈I∆I0 xi = 1 ∈ C

Claim 47 ∼F is an equivalence relation and π is well defined.

We now define the vectors. Each vector will have a coordinate corresponding to
the each element of E . Let eχI = π(χI)e[χI] (where e[χI] is the basis vector with a one in

the coordinate corresponding to [χI]). Let f ∈ F
w
2

vf =
∑
χ∈L

w
2

f̂(χ)e[χ]

so that

vf ([χI]) =
∑
χ∈[χI]

π(χ)f̂(χ)

Proof that constructed vectors satisfy Lasserre constraints
We see that Equations 1.7 is satisfied by the observation that the fourier expansion of 1⃗ is
1 in the trivial character and 0 everywhere else. Therefore v0 = (1, 0, . . . , 0) where the 1 is
in the coordinate of [∅]. Therefore ||v0||2 = 1.

We show 1.8 is satisfied. If C ∈ φ then C ∈ C.
First assume that C is

⊕
i∈I xi = 1. Then we must show that ||vf ||2 = 1 where

f =
⊕

i∈I xi. We note that χI ∈ F , π(χI) = −1, and also recall that f(x) = 1
2χ∅ − 1

2χI =
1
2 − 1

2χI . Thus vf = 1
2e[χ∅] − π(χI)

1
2e[χI] = e[χ∅] because χ∅ ∼F χI .

Similarly, let C =
⊕

i∈I xi = 0. Then we must show that ||vf ||2 = 1 where f =
1 −

⊕
i∈I xi, because f is a function that is to be always satisfied. We note that χI ∈ F ,

π(χI) = 1, and also recall that f(x) = 1 − (12χ∅ − 1
2χI) = 1

2 + 1
2χI . Thus vf = 1

2e[χ∅] +

π(χI)
1
2e[χI] = e[χ∅] because χ∅ ∼F χI .

44

Equation 1.9 is satisfied because we can write ⟨vf , vg⟩ in terms of only f̂ · g, the
fourier coefficients of f · g. It will follow that if f · g ≡ f ′ · g′ then ⟨vf , vg⟩ = ⟨vf ′ , vg′⟩
because the fourier coefficients of f · g and f ′ · g′ are the same. For [I] ∈ E , let f̂([χI]) =∑

χ∈[χI]
π(χI)f̂(χ) . Then

⟨vf , vg⟩ =
∑

[χI]∈E

⟨f̂([χI]), ĝ([χI])⟩

=
∑
χ∈L

w
2

π(χ)f̂(χ)
∑
θ∈[χ]

π(θ)ĝ(θ)

=
∑
χ∈L

w
2

π(χ)f̂(χ)
∑
ψ∈F

π(χψ)ĝ(χψ)

=
∑
ψ∈F

π(ψ)
∑
χ∈L

w
2

f̂(χ)ĝ(χψ)

=
∑
ψ∈F

π(ψ)f̂g(ψ)

The second line follows from expanding the summands. The third line follows from the fact
that [χ] ⊆ χ · F and because g is a w

2 -junta, ĝ(χψ) = 0 if the weight of χψ is greater than
w
2 . The fourth line follows because π(χ)π(χψ) = π(ψ), and the fifth line from the fact that

f̂g(ψ) =
∑

χ∈L
w
2
f̂(χ)ĝ(χψ) because the full fourier expansions of f and g are captured by

the characters of L
w
2 .

Equation 1.10, is satisfied because f̂ + g(χ) = f̂(χ) + ĝ(χ) so that vf + vg = vf+g
for any functions f, g, f + g ∈ F

w
2 . �

Remark 1 If the width-bounded resolution not only does not refute φ, but also does not fix
any variable xi to either true or false, then for every i ∈ [n], ||vxi ||2 = 1

2 . This is because
vxi = 1/2e[χ∅] + 1/2e[χ{i}] and if xi is not fixed than χ∅ ̸∼F χ{i}.

3.2 Extensions

We now mention the corollaries of Theorem 45 and its proof.

Corollary 48 For every ε, there exists some constants α ≥ 0, such that the αn level of
Lasserre, an integrality gap of 7

6 − ε for VertexCover persists.

The idea of the proof is to rewrite a 3-XOR formula φ as a VertexCover problem
on a graph Gφ using the standard FGLSS reduction. We will do it in such a way that any
vectors that satisfy the Lasserre relaxation for the 3-XOR instance φ will also satisfy the
VertexCover Lasserre relaxation for Gφ.

To prove this corollary, we use the following lemma which states that for a certain
type of transformations most of the Lasserre constraints continue to be satisfied:

45

Lemma 49 Let ⟨x,C,M⟩ and ⟨x̄, C̄, M̄⟩ be two constraint maximization or minimization
problems. For i ∈ [n], ψi : {0, 1}n̄ → {0, 1} be a k-junta on x̄. Define ψ : {0, 1}n̄ → {0, 1}n
as ψ(x̄) = (ψ1(x̄), . . . , ψn(x̄)).

If a collection of vectors {v̄f̄}f̄ satisfy the Lasserre constraints after r rounds for

⟨x̄, C̄, M̄⟩, then the collection of vectors {vf}f where vf ≡ v̄f◦ψ satisfy Equations 1.7, 1.9,
and 1.10 for ⌊r/k⌋ rounds of Lasserre.

Proof: That we only run for ⌊r/k⌋ rounds of Lasserre makes all the vectors well-defined.
Each constraint for which we define a vector depends on at most ⌊r/k⌋, and so the corre-
sponding vector depends on at most r variables.

We use the following standard identities.

• 1⃗ ◦ ψ = 1⃗

• f ◦ ψ + g ◦ ψ = (f + g) ◦ ψ

• (f ◦ ψ) · (g ◦ ψ) = (f · g) ◦ ψ

Now Equation 1.7 is satisfied because ||v1⃗||
2 = ||v̄1⃗◦ψ||

2 = ||v̄1⃗||
2 = 1.

Equation 1.10 is satisfied because vf + vg = v̄f◦ψ + v̄g◦ψ = v̄(f+g)◦ψ = vf+g
Equation 1.9 is satisfied because

⟨vf , vg⟩ = ⟨v̄f◦ψ, v̄g◦ψ⟩ = ⟨v̄(f ·g)◦ψ, v̄0⟩ = ⟨v̄(f ′·g′)◦ψ, v̄0⟩ = ⟨v̄f ′◦ψ, v̄g′◦ψ⟩ = ⟨vf ′ , vg′⟩

�
We now prove Corollary 48

Proof: [Corollary 48] Given a 3XOR instance φ with ∆n = m equation, we define the
FGLSS graph Gφ of φ as follows: Gφ has N = 4m vertices, one for each equation of φ
and for each assignment to the three variables that satisfies the equation. We think of each
vertex i as being labeled by a partial assignment to three variables L(i). Two vertices i and
j are connected if and only if L(i) and L(j) are inconsistent. For example, for each equation,
the four vertices corresponding to that equation form a clique. It is easy to see that opt(φ)
is precisely the size of the largest independent set of Gφ because there is a bijection between
maximal independent sets and assignment to the n variables. Note that, in particular, the
size of the largest independent set of Gφ is at most N/4, where N = 4m is the number
of vertices. Thus the smallest vertex cover of Gφ is 3N/4 (because the complement of any
independent set is a vertex cover).

Let γ = 1/2 and d ≥ ln 2
2δ2

+ 1. Then by Theorem 45, there exists an α such, for
large enough n, that we can find a 3XOR formula over n variables that is at most 1/2 + δ
satisfiable and cannot be disproved by αn rounds of Lasserre. Let φ be such a formula.
Now, we using Theorem 45 we construct the Lasserre vectors for the 3XOR problem φ.

The constraints for the Lasserre hierarchy for VertexCover on this graph Gφ, are
defined over the vertices of this graph. Formally, let x = {0, 1}V (Gφ). Let C contain the
constraint xi∨xj for each edge (i, j) ∈ E(Gφ), so that the constraint is satisfied if and only
if at least one of the vertices incident to the edge is in the cover. Let M =

∑
i∈V (Gφ)

xi.

Then VertexCover is the 2-constraint minimization problem ⟨x,C,M⟩. We can convert it
into a Lasserre instance using Definition 6.

46

Now defining ψi = ¬L(i)1 , we employ Lemma 49 to construct Lasserre vectors.
By Lemma 49, these vectors satisfy Equations 1.7, 1.9, and 1.10 for Ω(n) rounds of the
Lasserre VertexCover relaxation.

We still must show that Equation 1.8 is satisfied. We must show that for each
edge (i, j) ∈ E(Gφ) that ||vi∧j ||2 + ||vi∧¬j ||2 + ||v¬i∧j ||2 = 1. By Claim 8 we can simply
show that ||v¬i∧¬j ||2 = 0. Let (i, j) ∈ E(Gφ), then

||v¬i∧¬j ||2 = ||v̄¬i∧¬j ||2 = ⟨v̄L(i), v̄L(j)⟩ = 0

The first equality follows from Equation 1.9. The last equality is true because L(i) and
L(j) contradict each other. We know this because i and j are joined by an edge.

Knowing that the Lasserre constraints are satisfied, we show that the objective
function

∑
i∈V (Gφ)

||vi||2 = 3N
4 . Four distinct vertices were created for each of the N

clauses. We show that the sum of the ||vi||2 over the four vertices in any clause is always 3.
Let C ∈ φ be such a clause, let ij : 1 ≤ j ≤ 4 be the four vertices corresponding to C, and
let L(ij) be the label corresponding to vertex ij . Then

∑4
j=1 v̄L(i) = v0 by Claim 7 and the

fact that the vector corresponding to an unsatisfying assignment is 0⃗. And so

4∑
j=1

||vij ||2 =
4∑
j=1

||v̄¬L(ij)||
2 = 3

4∑
j=1

||v̄L(ij)||
2 = 3

However, at most (1/2+ ε)n of the clauses of φ can be satisfied, and so Gφ has an
independent set of at most (18 + ε)N , and by taking the complement a vertex cover of size
at most 7

8 − ε. We get the integrality gap of (78 + ε)N/(3N/4) = 7
6 − ε �

Corollary 50 For any constants k and c, there exists constants α, δ ≥ 0, such that if H is
a random Uniform Hypergraph of with n vertices and δn edges, then with probability 1−o(1),
an integrality gap of c remains at the αn level of the k-UniformHypergraphIndependentSet
Lasserre hierarchy.

We will use the following well known proposition which is proved in the appendix
for completeness:

Proposition 51 For every k ≥ 3, ε > 0, there exists δ > 0, such that if H is a random
k-uniform hypergraph with ∆n edges, where ∆ ≥ δ, then with probability 1 − o(1), H has
no independent set of size εn, and, equivalently, H has no vertex cover of size (1− ε)n.

Proof: Let ε = 1
2c and let δ be as in Proposition 51. Let H be a random uniform

hypergraph with δn edges. By Proposition 51 we know that with high probability H has
no independent set of size εn. We now must show that there exists a good solution to the
Lasserre relaxation.

We note that the CSP instance is ⟨x,C,M⟩ where x = {0, 1}V (H), M =
∑

i∈V xi,
and for each edge (v1, . . . , vk) ∈ E(H) we add the constraint ∨ki=1¬xi to C which we can

1That is ψi(x) = 1 if x is consistent with the label L(i) and ψi(x) = 0 if x is inconsistent with the label
L(i)

47

transform into a Lasserre relaxation according to Definition 6. Note that any constraint of
the form ∨ki=1¬xi is implied by either ⊕k

i=1xi = 1 if k is even or ⊕k
i=1xi = 0 if k is odd.

Consider then the k-XOR formula φH with ∆n clauses which implies C. We see that in each
clause of φ the K-XOR constraint is random except for the constant. Thus, by Theorem 44
we know that φ cannot be disproved by width Ω(n) resolution and no single variable can
be fixed. By Theorem 45 φ cannot be disproved by Ω(n) levels of Lasserre. Moreover by
Remark 1 we have that ||vi||2 = 1/2 for all i. Thus M =

∑
||vi||2 = n/2.

So the ratio of the Lasserre optimum to the actual optimum is n/2
εn = c. �

Corollary 52 For any constants k and ε > 0, there exists constants α, δ ≥ 0, such that if
H is a random Uniform Hypergraph of with n vertices and δn edges, then with probability 1−
o(1), an integrality gap of 2−ε remains at the αn level of k-UniformHypergraphVertexCover
Lasserre hierarchy.

The proof of Corollary 50 is very similar to that of Corollary 52
Proof: Let ε = 1

2c and let δ be as in Proposition 51. Let H be a random uniform
hypergraph with δn edges. By Proposition 51 we know that with high probability H has
no vertex cover of size (1− ε)n. We now must show that there exists a good solution to the
Lasserre relaxation.

We note that the CSP instance is ⟨x,C,M⟩ where x = {0, 1}V (H), M =
∑

i∈V xi,
and for each edge (v1, . . . , vk) ∈ E(H) we add the constraint ∨ki=1xi to C which we can
transform into a Lasserre relaxation according to Definition 6. Note that any constraint of
the form ∨ki=1xi is implied by ⊕k

i=1xi = 1. Consider then the k-XOR formula φH with ∆n
clauses which implies C. We see that in each clause of φ the K-XOR constraint is random
except for the constant. Thus, by Theorem 44 we know that φ cannot be disproved by
width Ω(n) resolution and no single variable can be fixed. By Theorem 45 φ cannot be
disproved by Ω(n) levels of Lasserre. Moreover by Remark 1 we have that ||vi||2 = 1/2 for
all i. Thus M =

∑
||vi||2 = n/2.

So the ratio of the actual optimum to the Lasserre optimum is (1−ε)n
n/2 = 1−ε

2 . �

3.3 Conclusion

We have shown the first known integrality gaps for Lasserre. On the one hand
you can see the main theorem (Theorem 45) as showing gaps for problems that are already
known or thought to be NP-hard. We say that a predicate A is approximation resistant
if, given a constraint satisfaction problem over A predicates, it is NP-hard to approximate
the fraction of such predicates which can be simultaneously satisfied better than the trivial
algorithm which randomly guesses an assignment and returns the fraction of predicates it
satisfies. In [30], Zwick shows that the only 3-CPSs which are approximation resistant are
exactly those which are implied by parity or its negation. So, for k = 3, the main theorem
applies exactly to those problems which we already know are NP-hard.

On the other hand, the main theorem applies to results that are known to be in P.
Deciding if a k-XOR formula is satisfiable is equivalent to solving a set of linear equations
over F2, which can be done with Gaussian elimination.

48

The corollaries show that this technique can be translated into many different
settings, especially when there is a local “gadget” reduction from k-XOR.

3.A Proofs about Expansion and Resolution Width

Proposition 53 For any δ > 0, with probability 1− o(1), if φ is a random k-CSP chosen
from the distribution D with ∆n clauses where ∆ ≥ ln 2

2δ2
+ 1, at most a r(D) + δ fraction of

the clauses of φ can be simultaneously satisfied.

Proof: Fix an assignment to n variables. Now if we choose,m = ∆n clauses at random, the
probability that more than a r(D)+δ fraction of them are satisfied is at most exp(−2δ2m) =
exp(−2δ2∆n). To get this, we use the Chernoff Bound that says

Pr[X ≥ E[X] + λ] ≤ exp(−2λ2/m)

where X is the number of satisfied clauses, E[X] = r(D)m, λ = δm. Picking a random
formula and random assignment, the probability that more than a r(D) + δ fraction of the
clauses are satisfied is exp(−2δ2∆n). Taking a union bound over all assignments, we get

Pr[any assignment satisfies ≥ (1/2 + δ)m clauses] ≤ exp(−2δ2∆n) · 2n

= exp(n(ln 2− 2δ2∆) = exp(−2δ2n)

because ∆ ≥ ln 2
2δ2

+ 1. �

Theorem 54 For k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2 − 1, if φ is a random k-XOR
formula with density dnε, then with probability 1 − o(1) φ cannot be disproved by width

αn
1− ε

k/2−γ−1 resolution nor can any variable be resolved to true or false. Furthermore, this
is true even if the parity sign (whether the predicate is parity or its negation) of each clause
is adversatively chosen.

We use the following Proposition:

Proposition 55 For any k ≥ 3, d > 0, γ > 0, and 0 ≤ ε < k/2 − 1, there exists β > 0
such that if φ is a random k-XOR formula with density dnε then with probability 1− o(1):

1. Every subformula φ′ ⊆ φ where |φ′| ≤ βn
1− ε

k/2−1 is satisfiable even after fixing one
variable.

2. For every subformula φ′ ⊆ φ where |φ′| ∈ [13βn
1− ε

k/2−γ−1 , 23βn
1− ε

k/2−γ−1], we have that
2V (φ′)− k|φ′| ≥ 2γ|φ′| where V (φ′) is the number of variables in φ′.

Proof:[Theorem 54] Let φ be a random XOR formula as in the theorem statement and
let C be any clause over the variables of φ. We define µ(C) to be the smallest size of a
subformula φ′ ⊆ φ such that we can start from φ′ and imply C using resolution. We note
that in any resolution tree, if C1 and C2 together imply C3, then µ(C1) + µ(C2) ≥ µ(C3).

49

From the first part of Proposition 55 we know that with high probability µ(0 =

1) ≥ βn
1− ε

k/2−1 .
Now consider a resolution tree that derives 0 = 1, that is, a contradiction. We

will show that this tree must contain a clause C with many variables. By the subadditivity
of µ as we move up the resolution tree, this tree must contain some clause C such that

µ(C) ∈ [13βn
1− ε

k/2−γ−1 , 23βn
1− ε

k/2−γ−1].

We will now show that with high probability C contains γβ6 n
1− ε

k/2−γ−1 variables and
thus that the width of the resolution is at least as large. Let φ′ be a subformula of size µ(C)
which implies C. By the second part of Proposition 55 we know that 2V (φ′)−k|φ′| ≥ γ|φ′|.
Each variable of φ′ must appear either in two of the clauses of φ′ or in C itself. If a variable
appears in one clause, but not in C; then no matter what the value of the other variables
of that clause, the clause could still be satisfied by flipping this one variable. Therefore this
clause can always be satisfied independently of the rest of φ′ and is not required to imply
C. This violates minimality of φ′. So

|C|+ k

2
|φ′| ≥ V (φ′) ⇒ |C| ≥ 1

2
(2V (φ′)− k|φ′|) ≥ γ|φ′| ≥ γβ

3
n
1− ε

k/2−γ−1

so let α = γβ
3 .

To show that you cannot fix one variable to true or false the proof is almost exactly
the same. Instead of showing that µ(0 = 1) is large, we show that for any xi, µ(xi = 0) and
µ(xi = 1) are large. This also follows from the first part of Proposition 55.

We note that we never used the parity of individual clauses in the proof, only the
variables contained in each clause. Therefore the theorem still applies even if the parity of
each clause is adversarially chosen. �
Proof:[Proposition 55] First we bound the probability that for a random formula φ, there

exists a set of ℓ clauses containing a total of fewer than cℓ variables by (O(1) ℓk−c−1

nk−c−1−ε)
ℓ;

We can upper bound the probability that there is a set of ℓ clauses containing a
total of fewer than cℓ variables by(

n

cℓ

)
·
((cℓ

k

)
ℓ

)
· l! ·

(
m

ℓ

)
·
(
n

k

)−ℓ

where
(
n
cℓ

)
is the choice of the variables,

((cℓk)
ℓ

)
is the choice of the ℓ clauses constructed out

of such variables, ℓ! ·
(
m
ℓ

)
is a choice of where to put such clauses in our ordered sequence

of m clauses, and
(
n
k

)−ℓ
is the probability that such clauses were generated as prescribed.

Using
(
N
K

)
< (eN/K)K , k! < kk, and m = n1+ε we simplify to obtain the upper

bound
(
O
(

ℓk−c−1

nk−c−1−ε

))ℓ
.

We first show that the first part of the proposition is true if we do not fix any
variables. If φ′ ⊆ φ is a minimal unsatisfiable subformula of φ, then each variable that
appears in φ′ must occur twice in φ′. Otherwise the clause in which that variable appears
is always satisfiable and φ′ is not a minimal unsatisfiable subformula. Thus it is sufficient
to show that no set of ℓ clauses contains fewer than k

2 ℓ variables. We will show that if we

50

set c = k/2 in the above formula, the sum over ℓ from 1 to βn
1− ε

k
2−1 , can be made o(1)

with a sufficiently small β.

βn
1− ε

k
2−1∑

ℓ=1

(
O

(
ℓ
k
2
−1

n
k
2
−1−ε

))ℓ
Let δ be a sufficiently small constant, and let ω(n) be some function that grows in an
unbounded fashion. We break up the above sum into:

δn
1− ε

k
2−1 ω(n)−1∑
ℓ=1

(
O

(
ℓ
k
2
−1

n
k
2
−1−ε

))ℓ
+

βn
1− ε

k
2−1∑

ℓ=δn
1− ε

k
2−1 ω(n)−1+1

(
O

(
ℓ
k
2
−1

n
k
2
−1−ε

))ℓ

We then bound each of these terms:

δn
(1− ε

k
2−1

)

ω(n)−1∑
ℓ=1

(
O

(
ℓ
k
2
−1

n
k
2
−1−ε

))ℓ
≤

∞∑
ℓ=1

(
O(1)(δω(n)−1)k−c−1

)ℓ
= o(1)

for sufficiently small δ and sufficiently large n.

βn
1− ε

k
2−1∑

ℓ=δn
1− ε

k
2−1 ω(n)−1+1

(
O

(
ℓ
k
2
−1

n
k
2
−1−ε

))ℓ
≤

∞∑
ℓ=δn

1− ε
k
2−1 ω(n)−1+1

(
O(1)βk−c−1

)ℓ

≤ βδn
1− ε

k
2−1 ω(n)−1

∞∑
ℓ=1

(
O(1)βk−c−1

)ℓ
= o(1)

for sufficiently small β and sufficiently slowly growing ω(n).
Now we note that small subformulas are satisfiable even if we fix one variable.

We can use all the above machinery, but now require that every set of ℓ clauses contains

k
2 + 1 variables. However, this change is absorbed into the O constant in

(
O
(

ℓk−c−1

nk−c−1−ε

))ℓ
because in the above analysis when changing to

(
n

cℓ−1

)
·
((cℓ−1

k)
ℓ

)
· l! ·

(
m
ℓ

)
·
(
n
k

)−ℓ
we only get

an addition factor of cℓ−1
ne

(
cℓ
cℓ−1

)k
the first factor helps and the second is bounded by 2k

which is a constant.
Now we show the second part of the Proposition.
We saw above that we can bound the probability that there exists a subformula

of size ℓ that fails to satisfy 2V (φ′) − k|φ′| ≥ 2γ|φ′| by
(
O

(
ℓ
k
2−γ−1

n
k
2−γ−1−ε

))ℓ
. We will fix β

later, and now use a union bound to upper bound the probability that there exists a clause

φ′ such that |φ′| ∈ [13βn
1− ε

k/2−γ−1 , 23βn
1− ε

k/2−γ−1] and |V (φ′)| ≤ (k2 + γ)|φ′|.

51

1
3
βn

1− ε
k/2−γ−1∑

ℓ= 1
3
βn

1− ε
k/2−γ−1

(
O

(
ℓ
k
2
−γ−1

n
k
2
−γ−1−ε

))ℓ

≤
(
1

3
βn

1− ε
k/2−γ−1

)O

(
2
3βn

1− ε
k/2−γ−1

) k
2
−γ−1

n
k
2
−γ−1−ε




(
1
3
βn

1− ε
k/2−γ−1

)

≤
(
1

3
βn

1− ε
k/2−γ−1

)(
O(

2

3
β)k/2−γ−1

)(
1
3
βn

1− ε
k/2−γ−1

)

≤
(
1

3
βn

1− ε
k/2−γ−1

)
(
1

2
)

(
1
3
βn

1− ε
k/2−γ−1

)
= o(1)

for a sufficiently small choice of β
�

Proposition 56 For every k ≥ 3, ε > 0, there exists δ > 0, such that if H is a random
k-uniform hypergraph with ∆n edges, where ∆ ≥ δ, then with probability 1 − o(1), H has
no independent set of size εn, and, equivalently, H has no vertex cover of size (1− ε)n.

Proof:
Let δ be such that (1− ε)δ < ε

e . Then the probability that H has an independent
set of size εn (or has a vertex cover of size (1 − ε)n) is bounded by the probability that
there is a set of size εn such that no edge contains only vertices from this set:(

n

εn

)
(1− ε)∆n ≤

(e
ε

)εn
(1− ε)δn ≤

(e
ε

)εn (ε
e

)n
=
(ε
e

)(1−ε)n
= o(1)

�

52

Bibliography

[1] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonapprox-
imability results in the Lovasz-Schrijver hierarchy. In Proceedings of the 37th ACM
Symposium on Theory of Computing, pages 294–303, 2005.

[2] Sanjeev Arora, Béla Bollobás, and László Lovász. Proving integrality gaps without
knowing the linear program. In Proceedings of the 43rd IEEE Symposium on Founda-
tions of Computer Science, pages 313–322, 2002.

[3] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving integrality
gaps without knowing the linear program. Theory of Computing, 2(2):19–51, 2006.

[4] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended
abstract. In Proceedings of the 40th ACM Symposium on Theory of Computing, pages
21–28, 2008.

[5] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows and a
√
log n-

approximation to sparsest cut. In Proceedings of the 36th ACM Symposium on Theory
of Computing, 2004.

[6] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow-resolution made simple.
J. ACM, 48(2):149–169, 2001.

[7] Josh Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann
Pitassi. Rank bounds and integrality gaps for cutting planes procedures. In Proceedings
of the 44th IEEE Symposium on Foundations of Computer Science, pages 318–327,
2003.

[8] Moses Charikar. On semidefinite programming relaxations for graph coloring and Ver-
tex Cover. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms,
pages 616–620, 2002.

[9] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global tradeoffs
in metric embeddings. Foundations of Computer Science, Annual IEEE Symposium
on, 0:713–723, 2007.

[10] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for
Sherali-Adams relaxations. In Proceedings of the 41st ACM Symposium on Theory of
Computing, 2009.

53

[11] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite program-
ming relaxations. In Proceedings of the 48th IEEE Symposium on Foundations of
Computer Science, pages 691–701, 2007.

[12] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming
relaxations of maxcut. In Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms, pages 53–61, 2007.

[13] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex-cover.
Annals of Mathematics, 162(1):439–486, 2005.

[14] Uriel Feige and Eran Ofek. Random 3CNF formulas elude the Lovász theta function.
Manuscript, 2006.

[15] Peter Frankl and Vojtech Rödl. Forbidden intersections. Transactions of the American
Mathematical Society, 300(1):259–286, March 1987.

[16] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis. Inte-
grality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver hierarchy. In
Proceedings of the 48th IEEE Symposium on Foundations of Computer Science, pages
702–712, 2007.

[17] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the
ACM, 42(6):1115–1145, 1995. Preliminary version in Proc. of STOC’94.

[18] Hamed Hatami, Avner Magen, and Vangelis Markakis. Integrality gaps of semidefinite
programs for vertex cover and relations to l1 embeddability of negative type metrics.
In Proceedings of the 10th International Workshop on Approximation and the 11th
International Workshop on Randomization and Computation, pages 164–179, 2007.

[19] Subhash Khot and Nisheeth Vishnoi. The unique games conjecture, integrality gap for
cut problems and the embeddability of negative type metrics into ℓ1. In Proceedings of
the 46th IEEE Symposium on Foundations of Computer Science, pages 53–63, 2005.

[20] Jon M. Kleinberg and Michel X. Goemans. The Lovász Theta function and a semidefi-
nite programming relaxation of Vertex Cover. SIAM Journal on Discrete Mathematics,
11:196–204, 1998.

[21] Jean B. Lasserre. An explicit exact sdp relaxation for nonlinear 0-1 programs. In
Proceedings of the 8th International IPCO Conference on Integer Programming and
Combinatorial Optimization, pages 293–303, London, UK, 2001. Springer-Verlag.

[22] L. Lovasz and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM J. on Optimization, 1(12):166–190, 1991.

[23] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, pages 1–7, January 1979.

54

[24] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proceed-
ings of the 49th IEEE Symposium on Foundations of Computer Science, pages 593–692,
2008.

[25] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower bound
for Lovasz-Schrijver SDP relaxations of Vertex Cover. In Proceedings of the 39th ACM
Symposium on Theory of Computing (STOC07), 2007. Earlier version appeared as
Technical Report TR06-098 on Electronic Colloquium on Computational Complexity.

[26] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality gaps for
Lovasz-Schrijver LP relaxations of Vertex Cover and Max Cut. In Proceedings of the
39th ACM Symposium on Theory of Computing, 2007. Earlier version appeared as
Technical Report TR06-132 on Electronic Colloquium on Computational Complexity.

[27] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxation between the contin-
uous and convex hull representations. SIAM J. Discret. Math., 3(3):411–430, 1990.

[28] Iannis Tourlakis. New lower bounds for Vertex Cover in the Lovasz-Schrijver hierarchy.
In Proceedings of the 21st IEEE Conference on Computational Complexity, 2006.

[29] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings
of the 41st ACM Symposium on Theory of Computing, pages 303–312, 2009.

[30] U. Zwick. Approximation algorithms for constraint satisfaction problems involving at
most three variables per constraint. In Proceedings of the 9th ACM-SIAM Symposium
on Discrete Algorithms, 1998.

