Attribution

* These slides were prepared for the New Jersey
Governor’s School course “The Math Behind

the Machine” taught in the summer of 2012
by Grant Schoenebeck

* Large parts of these slides were copied or
modified from the previous years’ courses
given by Troy Lee in 2010.

il

A
w

o

-’(-(F
Q

#t

e

=

WIKIPEDIA

‘The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article

 Interaction
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
Donate to Wikipedia
Help

» Toolbox
w Print/export
Create a book

Download as PDF
Printable version

Learning

New features & Log in/ create account

Article Discussion Read Edit View history |Searc Q

Winnow (algorithm)

From Wikipedia, the free encyclopedia

" The introduction to this article provides insufficient context for those unfamiliar with the subject. Please help improve the article
with a good introductory style. (October 2009}

The winnow allgr:)rilhmm is a technigue fram machine leaming for learning a linear classifier from labeled examples. It is very similar to the perceptron algorithm. However, the perceptron
algorithm uses an additive weight-update scheme, but winnow uses a multiplicative weight-update scheme that allows it to perform much better when many dimensions are irrelevant (hence
its name). It is not a sophisticated algorithm but it scales well to high-dimensional spaces. During training, winnow is shown a sequence of positive and negative examples. From these it
leamns a decision hyperplane. It can also be used in the online learning setting, where the learning phase is not separated from the training phase.

Contents [hide]

1 The algorithm
2 Mistake bounds
3 Relferences
3.1 Citations and notes

The algorithm [edit]

The basic algorithm, Winnow1, is given as follows. The instance space is X = {0,1}". The algorithm maintains non-negative weights w, for i€ { 1..n } which are initially set to 1. When

the learner is given an example (Xl’

"), the learner follows the following prediction rule:

Is our computers learning?

What does it mean for a computer to “learn”?
— Prediction with low error
— Compression
Cannot “learn” random functions!
— Unpredictable
— Uncompressable
Must assume function “nice” or bias toward certain functions

Many different scenarios

— Unsupervised learning
e Clustering

— Supervised learning
— Semi-supervised Learning
— Learning and Optimizing

Examples of Computational Learning

* Spam

* Deep Blue

e Search Engines

* Datacenter Power conservation
* I[mage Search

* Face recognition in Facebook

Answering Questions

BEFORE AND AFTER 4 POINTS b4 bubonic

"Colorful” 14th-century

plague that became a hit v What is Black Death of a Salesman?

play by Arthur Miller. | was considering these answers:
Black Death of a Salesman s74
Bubanic Plague 063
Elack Death 043
Don Juan Domingo Peron 025
Piping Hot Corner
Watson is correct. 4 points have What's this?
been added to Watson's score.

CONTINUE

http://www.nytimes.com/2010/06/20/magazine/20Computer-
t.html

http://www.nytimes.com/2010/06/20/magazine/20Computer-t.html
http://www.nytimes.com/2010/06/20/magazine/20Computer-t.html
http://www.nytimes.com/2010/06/20/magazine/20Computer-t.html

Prediction

* Predict a user’s rating based on
previous rankings and rankings of
other users.

* Recently, Netflix gave out
$1,000,000 in contest to improve
their ranking system by 10%.

— Winning algorithm was a blend of
many methods.

— Surprising relevant information:

* Ranking a movie just after watching vs.

years later...

[l The Lower Depths

Because you enjoyed:

ok
Sl Seven Samurai

Delicatessen

B Barton Fink

Reservolr Dogs

Because you enjoyed:

g Fulp Fiction

Fargo
The Big Lebowski

Online Learning

* Bob is given examples on the fly, and has to

classify them.

e After each example, Bob is given correct answer.

Online Learning

* Focus on the binary case: spam vs. not spam

Online Learning

Focus on the binary case:
spam vs. hot spam

Online Learning

Online Learning

Interested in Total Number of Mistakes

More abstractly...

Bob is learning an unknown N
Boolean function u(x). L —— 0
Q W

— Here, u is a function on
lunch meats.

— Usually, have an
assumption that u comes
from a known family of
functions---called a
concept class.

Learning Disjunctions

 We will assume the unknown function u
comes from a simple family: monotone
disjunctions.

—u(x) =x;, Vx;, V-V

— Monotone means no negations

Disjunctions

X1 = [Aardvark] A simple “bag of words” model
of spam---
L2 = [Aarrghh]

An email is spam if it contains
one of a handful of keywords:

L601,384 =[Zyzzyval viagra, lottery, xanax...

SPAM(x)=viagra(x) OR lottery(x) OR ... OR xanax(x)

We have variables to indicate if a word is present in email x.

n=Total # variables, k=number present in disjunction.

Basic Algorithm

Maintain a hypothesis h(x) for what the disjunction is.
iy, h(x) =21 VI V-V,

That is, we assume disjunction includes all variables.

This will label everything as spam!

Update Rule

Every time we get an answer wrong, we will modify

our hypothesis, as follows:

* On false positive, i.e. SPAM(x)=0 and h(x)=1,
remove all variables from h where x; = 1.

* On false negative, i.e. SPAM(x)=1 and h(x)=0,
output FAIL.

— |f the function we are learning is actually a monotone
disjunction, false negatives never happen.

— Variables present in hypothesis always a superset of
those in SPAM function.

Mistakes?

Number of Mistakes

Claim: This algorithm makes at most n mistakes
if unknown function is indeed a disjunction.

Every time we get an answer wrong, we will modify our hypothesis, as
follows:

On false positive, i.e. SPAM(x)=0 and h(x)=1, remove all variables
from h where x; = 1.

On false negative, i.e. SPAM(x)=1 and h(x)=0, output FAIL.

— If the function we are learning is actually a monotone disjunction, false
negatives never happen.

— Variables present in hypothesis always a superset of those in SPAM function.

* When we make a mistake at least one word is
eliminated from hypothesis

Importance of Good Teachers...

 What happens if some example is mislabeled?
— u(x)=1 but Teacher mistakenly says u(x)=0.

— The weight for some variable relevant to u will be
set to zero, and can never come back!

e Then we can make an unbounded number of
mistakes.

Sparse Disjunctions

* This algorithm has disadvantage that the
number of mistakes can depend on total
number of variables.

— In spam example, even though there are only a

few keywords, we could make make mistakes on
order the number of words in English!

* |deally, would like an algorithm that depends
on the number of relevant variables rather
than total number of variables.

Winnow Algorithm

 Winnow- to separate the chaff from the grain

 The winnow algorithm quickly separates the
irrelevant variables from the relevant ones.

Winnow Algorithm

e Say the unknown function only depends on k
variables out of a total of n.

—u(x) =x;, Vx;, V-V

— The winnow algorithm has a mistake bound of
about k log(n)

— Much improved if k <K n

Linear Threshold Function

* |n the winnow algorithm, Bob maintains as
hypothesis a linear threshold function.

h(x) = sign(wix1 + wexs + - - - + Wy, — 0).

* Weights w; and threshold 8 are real numbers.

sign(x)
1

Linear Threshold Function

e Linear threshold functions are used as a
simple model of a neuron.

E w;x; > 07

7

Linear Threshold Function

h(x) = sign(wix1 + wexs + - - - + wWpx, — 0).

What can linear threshold functions do?

OR(x) = sign(z; + 22 + - + x, — 1/2).
AND(z) =sign(z;1 + 22+ -+ 2, — (n — 1/2)).
MAJ(x) = sign(xy + x2 + -+ + x5, — n/2)

Linear Threshold Function

Another sanity check: the unknown function

u(m):mil\/m@-g\/---\/aﬁ@-k

can also be expressed as a LTF.

- 1
sign(xs, + T, + ... + x4, — 3)

Linear Threshold Function

Linear threshold function defines a plane in space,
evaluates which side of the plane a point lies on.

Tr+1y=

2
¥ \
4
1] 1 2

Linear Threshold Function

Linear threshold function defines a plane in space,
evaluates which side of the plane a point lies on.

—r4+y+z=1

Linear Threshold Function

Can every function be expressed as a linear threshold
function?

No, for example

PARITY(z) =21+ 22+ -+ x, mod 2

Note that linear threshold functions are monotone in
each coordinate.

Linear Threshold Function

* |n the winnow algorithm, Bob maintains as
hypothesis a linear threshold function.

h(x) = sign(wix1 + wexs + - - - + Wy, — 0).

* |nitially, all weights are set to 1 and 6=n.

* Bo

0 guesses h(x) for the current hypothesis h.
f correct: stay the course
f wrong: update weights

Recap so far...

We want to learn a function which is a disjunction of
k variables out of n possible.

U,(.’II) — Ly \/.’II?;2 \/*'*"\/.’133';(C
Initially, we take as hypothesis the function
sign(x1 + 22+ ...+ 2y —n)

After each mistake we will update the weight of each
variable. Threshold will stay the same.

Update Rules

In the winnow algorithm, Bob maintains as hypothesis
a linear threshold function.

h(x) = sign(wizy + -+ + wpxy, — N)
Update: On false positive, i.e. u(x)=0 and h(x)=1, Bob sets

w; = 0 for all 7+ where xz; = 1.

On false negatives, i.e. u(x)=1 and h(x)=0, Bob sets

w; «— 2w; for all 1+ where z; = 1.

Reasonable Update?

Update: On false positive, i.e. u(x)=0 and h(x)=1, Bob sets

w; = 0 for all 2 where z; = 1.

On false negatives, i.e. u(x)=1 and h(x)=0, Bob sets

w; «— 2w; for all 2 where z; = 1.

If the unknown disjunction contains x; , then w; will
never be set to 0.

On false negatives, give more weight to all variables
which could be making the disjunction true.

Simple Observations

h(x) = sign(wyx1 + -+ - + wpxy — n)
Update: On false positive, i.e. u(x)=0 and h(x)=1, Bob sets

w; = 0 for all 72 where z; = 1.

On false negatives, i.e. u(x)=1 and h(x)=0, Bob sets

w; «— 2w; for all + where z; = 1.

1) Weights always remain non-negative.

2) No weight will become larger than 2n.

Mistake Bound

Call a weight doubling a promotion, and a weight being setto 0 a
demotion.

By the second observation, a weight will only
be promoted at most log n times. Otherwise,
becomes larger than 2n.

As there are only k relevant variables in the
unknown disjunction, total number of
promotions is at most k log n.

Mistake Bound

Consider when u(x)=0 and h(x)=1. Then

Z w; > n.

1, =1
After update, all of these weights will be set to 0.

Thus the sum of all the weights will decrease by
at least n after the update.

Mistake Bound

Consider when u(x)=1 and h(x)=0. Then

Z w; < n.

;=1

After update, all of these weights will be doubled.

Thus the sum of all the weights will increase by
at most n after the update.

Mistake Bound

For every demotion:
— sum of weights decreases by at least n.

For every promotion:
— sum of weights increases by at most n.

Total number of promotions is at most k log n.

We know that the sum of the weights must remain non-
negative.

Thus number of demotions at most 1+k log n.

If the unknown function is a k-disjunction, the total number
of mistakes of the winnow algorithm is bounded by about
2k log n.

Still suffers from errors in Teacher ®

A Softer Version

This algorithm is harsh---once a weight is set
to zero it can never come back.

We can instead consider a softer variation:
Update: On false positive, i.e. u(x)=0 and h(x)=1, Bob sets

w; «— - for all 2 where z; =1

On false negatives, i.e. u(x)=1 and h(x)=0, Bob sets

w; «— 2w, for all 2 where z; = 1.

Learning from Experts

Will Pepsi outperform Cocacola next month??

Everyone has a prediction!

sl |

classic

Learning from Experts

* Whom should we listen to?
— n experts
— k is number of mistakes made by best expert
— tis number of predictions

* Regret = Best Expert’s Performance - Our
Performance

* Can follow an amazing algorithm!

— algorithm makes < k + \/t log(n) mistakes
— This is without knowing the best expert in advance!

Weighted Majority

The algorithm is very similar to Winnow.

Give a weight to each expert. Initially, set all
weights equal to 1.

Predict according to the side with more weight.

After each example, update the weights:
If expertiis wrong: Wy 0991{)@

If expertiis right: w; <— W;

Uses of multiplicative Updates

Weak Learners to Strong Learners
— Adaboost

Hard Core Sets
Approximate solutions to linear programs

Approximate solutions to semidefinite
programs

Find optimal strategies in zero-sum games

