
Computability

Limits of Computation

Attribution

These slides were prepared for the
New Jersey Governor’s School course
“The Math Behind the Machine”
taught in the summer of 2011 by
Grant Schoenebeck

Large parts of these slides were copied
or modified from the previous years’
courses given by Troy Lee in 2010 and
Ryan and Virginia Williams in 2009.

Turing’s Legacy:
The Limits Of Computation.

Anything

 says is false!

David Hilbert (1862-1943)

Who among us would not be happy to lift the
veil behind which is hidden the future; to
gaze at the coming developments of our
science and at the secrets of its
development in the centuries to come?
What will be the ends toward which the
spirit of future generations of
mathematicians will tend? What methods,
what new facts will the new century
reveal in the vast and rich field of
mathematical thought?

In mathematics there is no ignorabimus.

http://en.wikipedia.org/wiki/File:Hilbert.jpg

The HELLO WORLD assignment

Suppose your teacher tells you:
Write a JAVA program to output the
word “HELLO WORLD” on the screen
and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO program,
no partial credit.

Teacher’s Grading Program

The grading program G must be able to
take any Java program P and grade it.

 Pass, if P prints “HELLO WORLD”
G(P)=

 Fail, otherwise.

How exactly might such a script work?

What kind of program
could a student who hated
his/her teacher hand in?

Nasty Program

n:=2;
While (the number 2n can be written as the sum
of two primes)
 n++;
Print “HELLO WORLD”;

The nasty program is a PASS if and only if the
Goldbach conjecture is false.

Despite the simplicity of
the HELLO WORLD

assignment, there is no
program to correctly

grade it!
This can be proved.

The theory of what can
and can’t be computed by
an ideal computer is called

Computability Theory
or Recursion Theory.

The Ideal Memory Model

 = finite alphabet of symbols
Each memory location holds one element of

“Abstract” Version: One memory location for
each natural number 0, 1, 2, …

“Practical” Version: Any time you start to run
out of memory, the computer contacts the
factory. A maintenance person is flown by
helicopter and attaches 100 Terabytes of
RAM to the computer.

Computable Functions

Fix any precise programming language, i.e., Java.

A program is any finite string of symbols from
that a Java interpreter will run (won’t give a
syntax error)

Recall * is the set of all strings of symbols.

A function f : * -> * is computable if there is a
program P that computes f, when P is executed
on a computer with ideal memory.

That is, for all strings x in *, P(x) = f(x).

The set of all programs is a
countable set!

Fix any precise programming language, i.e., Java.

A program is any finite string of symbols from
that a Java interpreter will run (won’t give a
syntax error)

Recall * is the set of all strings of symbols.

A function f : * -> * is computable if there is a
program P that computes f, when P is executed
on a computer with ideal memory.

That is, for all strings x in *, P(x) = f(x).

The set of all computable functions
is also a countable set!

Fix any precise programming language, i.e., Java.

A program is any finite string of symbols from
that a Java interpreter will run (won’t give a
syntax error)

Recall * is the set of all strings of symbols.

A function f : * -> * is computable if there is a
program P that computes f, when P is executed
on a computer with ideal memory.

That is, for all strings x in *, P(x) = f(x).

There are “countably
many” Java programs.
Hence, there are only

“countably many”
computable functions.

Are there countably
many functions from

 * to * ?

Power Sets

Let S be a set.

The power set of S is the set of all
subsets of S.

We write the power set as Power(S).

Proposition: If S is finite, then
Power(S) has cardinality 2|S|

Theorem: For every S, there is no
bijection between S and Power(S)

Suppose f : S->P(S) is a bijection.

A

B

C

S

{B}

{A}

{C}

Power(S)

{A,B}

{B,C}
{A,C}

{A,B,C}

Theorem: For every S, there is no
bijection between S and Power(S)

Suppose f:S->P(S) is 1-1 and ONTO.

Let WEIRD = { x | x ∈ S, x f(x) }

There’s some y in S such that f(y)=WEIRD

A

B

C

S

{
B
}

{A
}

{
C
}

Power(S)

{A,B}

{B,
C}

{A,C
}

{A,B,
C}

Is y in WEIRD? YES or NO?
if y in WEIRD, then y ∈ S, and y f(y) = WEIRD
So y is not in WEIRD... but then
 y ∈ S and y WEIRD = f(y)... So y is in WEIRD…

Contradiction

Theorem: There are uncountably
many functions!

There is a bijection between
 - The set of all subsets of *

 (the powerset of *)
- The set of all functions f: * -> {0,1}

Take a subset S of *, we map it to the
function f where:
f(x) = 1 x in S
f(x) = 0 x not in S

Uncountably many functions.

There is a bijection between
 - The set of all subsets of *

 (the powerset of *)
- The set of all functions f: * - > {0,1}

So the set of all f: * -> {0,1} has the
same size as the powerset of *
But * is countable, so the powerset of
* is uncountable!
(No bijection between * and Power(*)!)

So there are functions
from * to {0,1} that are

not computable.

Can we describe an
incomputable one?
Can we describe an

interesting, incomputable
function?

Notation And Conventions

• Fix any programming language

• When we refer to “program P” we mean
the text of the source code for P

• P(x) is the final output of program P on
input x, assuming that P eventually
halts

P(P)

It follows from our conventions that
P(P) is the output obtained when we run
P on the text of its own source code.

P(P) … So that’s what I look like

The Famous Halting Set: K

K is the set of all programs P
such that P(P) halts.

K = { Program P | P(P) halts}

The Halting Problem

Is there a program HALT such that:

HALT(P) = yes, if P(P) halts

HALT(P) = no, if P(P) does not halt

The Halting Problem
K = {P | P(P) halts }

Is there a program HALT such that:

HALT(P) = yes, if PK

HALT(P) = no, if PK

HALTS decides whether or not any
given program is in K.

THEOREM: There is no program
that can solve the halting problem!

(Alan Turing 1937)

Suppose a program HALT, solving the
halting problem, existed:

HALT(P) = yes, if P(P) halts
HALT(P) = no, if P(P) does not halt

 We will call HALT as a subroutine in a
new program called WEIRD.

The Program WEIRD(P):
If HALT(P) then go into an infinite loop.
Else stop.
<Put text of subroutine HALT here>

Does WEIRD(WEIRD) halt or not?

 YES implies HALT(WEIRD) = yes
 but then, WEIRD(WEIRD) will infinite loop

 NO implies HALT(WEIRD) = no
 but then, WEIRD(WEIRD) halts

The Program WEIRD(P):
If HALT(P) then go into an infinite loop.
Else stop.
<Put text of subroutine HALT here>

Does WEIRD(WEIRD) halt or not?

 YES implies HALT(WEIRD) = yes
 but then, WEIRD(WEIRD) will infinite loop

 NO implies HALT(WEIRD) = no
 but then, WEIRD(WEIRD) halts

CONTRADICTION

Turing’s argument is
just like the

DIAGONALIZATION
argument from the theory

of infinities.

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

YES, if Pi(Pj) halts

NO, otherwise

YES, if Pi(Pj) halts

NO, otherwise

di = HALT(Pi)

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

… …

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

… …

WEIRD(Pi) halts iff di = NO
The WEIRD row contains the
opposite of the diagonal…

W E I R D
di = HALT(Pi)

Alan Turing (1912-1954)

Is there a real
number that can be
described, but not

computed?

Consider the real
number between 0
and 1, which has a 1

in the ith decimal
place if Pi is in K,
and 0 otherwise

Computability Theory:
Vocabulary Lesson

We call a set S * decidable
if there is a program P such that:

 P(x) = yes, if x S

 P(x) = no, if x S

We already know: K is undecidable

Now that we have

established that the

Halting Set K is

undecidable, we can use

it as a starting point for

more “natural”

undecidability results.

Oracle

for S

Oracle For Set S

Is xS?

YES/NO

Example Oracle
 S = Odd Naturals

Oracle

for S

4

?
No

81?

Yes

L = the set of programs that take no input and halt

GIVEN:

Oracle

for L

Hey, I ordered an
oracle for the

famous halting set
K, but when I
opened the

package it was an
oracle for the

different set L.

GIVEN:

Oracle

for L

P ; Q ≡ simulates P using P as input

Does P(P) halt?

BUILD:

Oracle

for K

Does the program

Q

halt?

L = the set of programs that take no input and halt

Thus, if L were decidable

then K would be as well.

(If there were a program

for L, there’d be one for K,

too!)

 We already know K is not

decidable. Therefore L is

also not decidable!

HELLO = the set of programs that print HELLO and halt

GIVEN:

HELLO

Oracle

Does P halt?

BUILD:

Oracle

for L

Let P’ be P with all print

statements removed.

Does

[P’; Print HELLO]

ever print HELLO?

If there were a program

for HELLO, then there’d

be a program for L.

But L is not decidable.

So HELLO is not

decidable.

EQUAL = All <P,Q> such that P and Q have

identical outputs on all inputs

GIVEN:

EQUAL

Oracle

Does P equal

HELLO ?

BUILD:

HELLO

Oracle

Let H = [Print HELLO]

Are P and H equal?

Halting with input,

Halting without input,

The “Hello World”

assignment, and

EQUAL are not

decidable.

What about problems

that have no obvious

relation to halting, or

even to computation can

encode the Halting

Problem is non-obvious

ways?

Diophantine equations

𝑎𝑘 + 𝑏𝑘 = 𝑐𝑘
𝑥𝑦2 − 𝑥𝑧 = 𝑝

Hilberts 10th problem was to find a
solution to such equations.

Puzzle Pieces

Given a finite set of puzzle pieces, can
you tile the plane (you are allowed to
use each piece arbitrarily often)?

PHILOSOPHICAL

INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure
that can be grasped and
performed by the human mind
and pencil/paper, can be
computed on a conventional
digital computer with no bound
on its memory.

The Church-Turing Thesis is NOT a
theorem. It is a statement of belief

about the universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs.

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
That is, no one has given a concrete
example of something that humans can
compute in a consistent and well
defined way, that also can’t be
programmed on a computer.

The thesis is true.

Mechanical Intuition

The brain is a machine. The components
of the machine obey physical laws.

In principle, an entire brain can be
simulated step by step on a digital
computer. Thus, any thoughts of such a
brain can be computed by a simulating
computer. The thesis is true.

Spiritual Intuition

The mind consists of part matter and
also part soul. Soul, by its very nature,
cannot be reduced to physical laws.
Thus, the action and thoughts of the
brain cannot be simulated or reduced to
simple components and rules. The
thesis is false.

Do these theorems about

the limits of computation

tell us something about

the limitations of human

thought?

Self-Reference Puzzle

Write a program that prints its own
code out as output.

No calls to the operating system, or to
memory external to the program.

(You don’t need to use a specific
programming language, just your own
“English pseudocode” will do.)

