
P vs. NP

Simpsons:
Treehouse of
Horror VI

Attribution

• These slides were prepared for the New Jersey
Governor’s School course “The Math Behind
the Machine” taught in the summer of 2012
by Grant Schoenebeck

• Large parts of these slides were copied or
modified from the previous years’ courses
given by Troy Lee in 2010 and Ryan and
Virginia Williams in 2009.

Questions?

You are given the complete graph of Facebook.

What questions would you ask?

(What questions could we hope to answer?)

What is NP?

Time for coloring...

Coloring Maps

In a map, don’t want neighboring states to be the same color.
How many colors are needed?

Try It!

Coloring Maps

How many colors did you need?

Are four colors necessary?

Look at the wild west...

Nevada has 5 nbhs.

The cycle of nbhs: oregon, idaho, utah,
arizona, cali,oregon
requires 3 colors.

Are four colors necessary?

Look at the wild west...

O I

U C

A

N

Four Color Theorem

Every map can be colored with only four colors.

History of the four color theorem

• 1852: Conjecture raised by Guthrie who
noticed counties of England could be colored
with only four colors.

• 1879: Proof given by Kempe.

• 1890: Heawood discovers flaw in Kempe’s
proof. Proves that five colors suffice.

• 1976: Appel and Haken prove it. Proof relies
heavily on computer verification. Reduce
problem to examining 1,936 special maps.

History of the four color theorem

• 1996: Sanders, Seymour, and Thomas give a
simplified proof only requiring to check (by
computer) 633 special maps.

• Their proof gives a n2 time algorithm for four
coloring a map.

• Still an open question to find a completely
hand checkable proof!

Where we stand

• Every map can be colored with four colors.

• Some can be colored with three.

• Some can be colored with two. Can you tell
which?

O I

U

A

N

3-coloring problem

• Given a map, output “yes” if it can be colored
with three colors, “no” otherwise.

• What is one possible algorithm to do this?

– One could simply try all possible 3n colorings. If a
coloring “works,” it is easy to tell. Why coloring?

• Actually useful if:

– Want to avoid conflicts.

– Clustering by dissimilarity.

The Sixties

• Many different routing and scheduling
problems did not have efficient solutions.

• They all seemed difficult but different nuts to
crack.

NP

• NP is the class of problems which have
solutions that can be efficiently verified.

– As usual, efficiently means polynomial in size of
input.

• NP stands for nondeterministic polynomial
time.

• 3-coloring is in NP. Given a proposed
coloring, we can quickly check if it works.

P vs. NP

• P: problems which we can efficiently solve.

• NP: problems which, given a proposed
solution, we can efficiently check if it works.

• Every problem in P is also in NP.

• It is conjectured that there are problems in
NP, for example 3-coloring, that are not in P.

P vs. NP

• Figuring out the relationship between P and
NP is one of, if not the, greatest open problem
in mathematics today.

• It is one of the 7 open problems which the
Clay Mathematics institute is offering
$1,000,000 for its resolution.

6

Importance of P vs. NP

• Given a conjecture, find a proof.

• Given data on some phenomenon, find a
theory explaining it.

• Given constraints (cost, strength, energy), find
a design (bridge, medicine, phone).

• Code breaking.

• In each of these cases, when we see a good
solution, we should be able to recognize it!

NP-completeness

• Around 1971, Cook and Levin developed the idea
of NP-completeness. Soon after Karp showed 24
NP-complete problems off all shapes and colors.

• These are universal NP-problems...if you can
solve them efficiently, you can solve ANY problem
in NP efficiently.

• L is NP-complete if:
– L is in NP
– ANY other problem in NP reduces to L.

• If you come up with an efficient algorithm to 3-
color a map, then P=NP.

NP-completeness

• Today over 3000 NP-complete problems
known across all the sciences.

• Google Scholar search of NP-complete and
biology returns over 10,000 articles.

NP-completeness

• Quintessential NP complete problem: 3 SAT.

• 𝑥1 ∨ ¬𝑥4 ∨ 𝑥5 ∧ ¬𝑥1 ∨ 𝑥6 ∨ ¬𝑥5 ∧ ⋯

• Given a formula like this, does it have a
Boolean assignment which makes it true?

Integer Programming

Hamiltonian Cycle

Given a graph, is there a cycle which visits all vertices exactly
once?

Traveling Salesman Problem

Given a list of cities and pairwise distances between them,
is there a tour which visits each city exactly once and has
length at most k?

Clique

• Given (G, k) a graph and integer: Are there k
nodes in G that are all connected to each
other?

Independent Set

• Given (G, k) a graph and integer, are there k
nodes in G none of which are connected to
each other.

Vertex Cover

• Given (G, k) a graph and integer, are there k
nodes in G none of which are connected to
each other.

Set Cover

• Given list of items S and subsets of S: S1, S2, …,
Sm and integer k: are there k subsets that
“cover” S?

• Vertex Cover is a special case where each
element is in exactly 2 sets.

NP reductions

• 3-color ⇒ 3-SAT ⇒ Independent Set ⇒ Clique

• Independent Set ⇒ Vertex Cover ⇒ Set Cover

• Hamiltonian Cycle ⇒ Traveling Salesman Problem

• Idea: Given NP-complete problem A; problem B
in NP. If A reduces to B than every NP-problem
reduces to B. Therefore B is NP-complete.

• Implementation: Write an efficient procedure for
A assuming a subroutine that solves B.

3-coloring to 3-SAT

• Given a 3-coloring problem G = (V, E), create 3-SAT problem with:

• Variables
 x(v, c) ∀ v ∈ V, c ∈ {g, r, b}

• Clauses

– ∀(v,u) ∈ E c ∈ {g, r, b}
¬ x(v, c) ∨ ¬ x(u, c)

– ∀ v ∈ V
¬ x(v, g) ∨ ¬ x(v, r) ∨ ¬ x(v, r)

¬ x(v, g) ∨ ¬ x(v, b) ∨ ¬ x(v, b)

¬ x(v, b) ∨ ¬ x(v, r) ∨ ¬ x(v, r)
x(v, g) ∨ x(v, r) ∨ x(v, b)

• 3-coloring: color vertices of graph g, r, b so that
adjacent edges do not have same color

• 3-SAT: is there an assignment simultaneously satisfying
all clauses

3-SAT to Independent Set

• Write procedure for 3-SAT given a subroutine computing Independent Set
(G, k)
– 3-SAT: is there an assignment simultaneously satisfying all clauses

– Independent Set: Given (G, k) a graph and integer, are there k nodes in G none of which
are connected to each other.

𝒙𝟏 ∧ 𝒙𝟐 ∧ 𝒙𝟑

001

110

111

100

010

101

011

𝒙𝟑 ∧ ¬𝒙𝟒 ∧ 𝒙𝟓

011

100

101

110

000

111

001

Independent Set to Clique

• Write an efficient procedure IndependentSet(G, k) given
subroutine Clique(G’, k’):
– Independent Set: Given (G, k) a graph and integer, are there k nodes in

G none of which are connected to each other.

– Clique: Given (G, k) a graph and integer: Are there k nodes in G that
are all connected to each other?

• Ask Clique (G’, k) where G’ is G with “opposite” edges.

Independent Set to Vertex Cover

• Write an efficient procedure IndependentSet(G, k) given subroutine
VertexCover (G’, k’):

– Independent Set: Given (G, k) a graph and integer, are there k nodes in G none
of which are connected to each other.

– VertexCover: Given (G, k) a graph and integer: Are there k nodes in G that are
incident on all edges?

• Given IndependentSet problem (G, k)
Ask Vertex Cover (G, |V|- k)

Vertex Cover to Set Cover

• Write an efficient procedure VertexCover(G, k) given subroutine
SetCover(S, S1,…, Sm, k’):

– VertexCover: Given (G, k) a graph and integer: Are there k nodes in G that are
incident on all edges?

– SetCover: Given list of items S and subsets of S: S1, S2, …, Sm and integer k: are
there k subsets that “cover” S?

• Given VertexCover problem (G = (V, E), k), let S = E, ∀𝑣 ∈ 𝑉 𝑙𝑒𝑡 𝑆𝑣 =
𝑒 ∈ 𝐸: 𝑒 = 𝑣,∗ , k’ = k

Clique to ½-Clique

• Write an efficient procedure Clique(G, k) given
subroutine ½-Clique(G).
– ½ - Clique (G): Does G have |V|/2 nodes that are all

connected to each other?
– Clique(G, k): Given (G, k) a graph and integer: Are

there k nodes in G that are all connected to each
other?

• Given Clique problem (G, k) create ½-clique
problem G’ where you create |V| new vertices
and attach |V|-k of them to every other vertex
(new and old).

Hamiltonian Cycle to TSP

• Write a program that solves Hamiltonian Cycle
• You are have a subroutine TSP(all pair distances D, int k)

that reports the solution to TSP
– Hamiltonian Cycle: given a graph, is there a cycle which visits all

vertices exactly once?
– TSP: Given a list of cities and pairwise distances between them,

is there a tour which visits each city exactly once and has length
at most k?

• Given G = (V, E) create D where distance between u and v is
– 1 if (u,v) ∈ E
– 2 if (u,v) ∉ E

• Report back TSP(D, |V|)

So What Now?

• Relax worst case

– Use CPLEX/SAT solver

• Relax time constraints

• Relax exact optimal

– Can we closely approximate?

Combinatorial Optimization Problems

NP
-complete

P Matching
Network Flow
Min Cut

3SAT
Coloring
Integer Programming
Vertex Cover
Traveling Salesman
3XOR

Approx Combinatorial Optimization

PTAS

P

log(n)

2

log2(n)

TSP

Proving coNP statements

• Resolution 𝑥 ∨ 𝐴 ∧ ¬𝑥 ∨ 𝐵 ⇒ 𝐴 ∨ 𝐵

• Can try to take 3-SAT formula and resolve!

• Thm: any false statement will resolve to
 𝑥 ∧ ¬𝑥

• Thm: “RANDOM” 3-Sat will take time 2n to
resolve.

• Phases of hardness

Approximation Algorithms

• Cannot solve Vertex Cover, but can we find a
good approximation for it?

• Recall VertexCover: Given (G, k) a graph and
integer: Are there k nodes in G that are
incident on all edges?

• Can we approximate it?

• Wait! That would require us to prove an
approximate coNP statement: that the
VertexCover is not too small.

Approximating Vertex Cover

• Recall VertexCover: Given (G, k) a graph and
integer: Are there k nodes in G that are incident
on all edges?

• A maximal matching M is a set of edges such that
– Each vertex is incident on at most one edge in M
– No edge can be added without violating first condition

• Let M be Maximal matching and S any minimum
vertex cover: then 𝑀 ≤ 𝑆 ≤ 2 𝑀
– 𝑀 ≤ 𝑆 because u, v ∈ 𝑀 ⇒ 𝑢 ∈ 𝑆 𝑜𝑟 𝑣 ∈ 𝑆
– 𝑆 ≤ 2 𝑀 because the vertices of M are a vertex

cover.

Approximating Vertex Cover II

min 𝑣∈𝑉 xv

 ∀ (𝑢, 𝑣) ∈ 𝐸 xv + xu ≥ 1

 ∀𝑣 ∈ 𝑉 : xv ∈ {0, 1}
0 ≤xv ≤ 1 X

IP

LP
Integrality Gap = ≥ 2 by rounding

≤ 2: complete graph
 IP = n-1
 LP = n/2

Greedy Set Cover

• SetCover: Given list of n items S and subsets of S:
S1, S2, …, Sm and integer k: are there k subsets
that “cover” S?

• Take largest set, then largest set with respect to
remaining elements and repeat as necessary.

• At each step, greedy covers at least a 1/OPT
fraction of what is left. So takes at most x steps

where 𝑛 ∙ 1 −
1

𝑂𝑃𝑇

𝑥
< 1 so x = O(log(n))*OPT

