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Questions? 

 
 
 
 
You are given the complete graph of Facebook.   

 

What questions would you ask? 

(What questions could we hope to answer?) 



What is NP? 

Time for coloring... 



Coloring Maps 

In a map, don’t want neighboring states to be the same color. 
How many colors are needed? 

Try It! 



Coloring Maps 

How many colors did you need? 



Are four colors necessary? 

Look at the wild west... 

Nevada has 5 nbhs. 

The cycle of nbhs: oregon, idaho, utah, 
arizona, cali,oregon 
requires 3 colors. 



Are four colors necessary? 

Look at the wild west... 

O I 

U C 

A 

N 



Four Color Theorem 

Every map can be colored with only four colors. 



History of the four color theorem 

• 1852: Conjecture raised by Guthrie who 
noticed counties of England could be colored 
with only four colors. 

• 1879: Proof given by Kempe. 

• 1890: Heawood discovers flaw in Kempe’s 
proof.  Proves that five colors suffice. 

• 1976:  Appel and Haken prove it.  Proof relies 
heavily on computer verification.  Reduce 
problem to examining 1,936 special maps. 

 

 

 

 



History of the four color theorem 

• 1996: Sanders, Seymour, and Thomas give a 
simplified proof only requiring to check (by 
computer) 633 special maps.   

• Their proof gives a n2 time algorithm for four 
coloring a map.  

• Still an open question to find a completely 
hand checkable proof! 

 

 



Where we stand 

• Every map can be colored with four colors. 

• Some can be colored with three. 
 
 
 
 
 

• Some can be colored with two.  Can you tell 
which? 
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3-coloring problem 

• Given a map, output “yes” if it can be colored 
with three colors, “no” otherwise.  

• What is one possible algorithm to do this?  

– One could simply try all possible 3n colorings. If a 
coloring “works,” it is easy to tell. Why coloring? 

• Actually useful if: 

– Want to avoid conflicts. 

– Clustering by dissimilarity.  

 

 

 

 

 



The Sixties 

• Many different routing and scheduling 
problems did not have efficient solutions. 

• They all seemed difficult but different nuts to 
crack. 



NP 

• NP is the class of problems which have 
solutions that can be efficiently verified. 

– As usual, efficiently means polynomial in size of 
input. 

• NP stands for nondeterministic polynomial 
time. 

• 3-coloring is in NP.  Given a proposed 
coloring, we can quickly check if it works. 

 



P vs. NP 

• P: problems which we can efficiently solve. 

• NP: problems which, given a proposed 
solution, we can efficiently check if it works. 

• Every problem in P is also in NP. 

• It is conjectured that there are problems in 
NP, for example 3-coloring, that are not in P. 

 

 



P vs. NP 

• Figuring out the relationship between P and 
NP is one of, if not the, greatest open problem 
in mathematics today.  
 

• It is one of the 7 open problems which the 
Clay Mathematics institute is offering 
$1,000,000 for its resolution.   
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Importance of P vs. NP 

• Given a conjecture, find a proof. 

• Given data on some phenomenon, find a 
theory explaining it. 

• Given constraints (cost, strength, energy), find 
a design (bridge, medicine, phone). 

• Code breaking.  

• In each of these cases, when we see a good 
solution, we should be able to recognize it!  

 

 

 



NP-completeness 

• Around 1971, Cook and Levin developed the idea 
of NP-completeness.  Soon after Karp showed 24 
NP-complete problems off all shapes and colors. 

• These are universal NP-problems...if you can 
solve them efficiently, you can solve ANY problem 
in NP efficiently. 

• L is NP-complete if: 
– L is in NP 
– ANY other problem in NP reduces to L. 

• If you come up with an efficient algorithm to 3-
color a map, then P=NP. 

 
 



NP-completeness 

• Today over 3000 NP-complete problems 
known across all the sciences. 

• Google Scholar search of NP-complete and 
biology returns over 10,000 articles. 

 



NP-completeness 

• Quintessential NP complete problem: 3 SAT. 
 

• 𝑥1 ∨ ¬𝑥4 ∨ 𝑥5 ∧ ¬𝑥1 ∨ 𝑥6 ∨ ¬𝑥5 ∧ ⋯ 

 

• Given a formula like this, does it have a 
Boolean assignment which makes it true? 

 



Integer Programming 



Hamiltonian Cycle 

Given a graph, is there a cycle which visits all vertices exactly 
once? 



Traveling Salesman Problem 

Given a list of cities and pairwise distances between them, 
is there a tour which visits each city exactly once and has 
length at most k? 



Clique 

• Given (G, k) a graph and integer:  Are there k 
nodes in G that are all connected to each 
other? 

 



Independent Set 

• Given (G, k) a graph and integer, are there k 
nodes in G none of which are connected to 
each other. 

 



Vertex Cover 

• Given (G, k) a graph and integer, are there k 
nodes in G none of which are connected to 
each other. 

 



Set Cover 

• Given list of items S and subsets of S: S1, S2, …, 
Sm and integer k: are there k subsets that 
“cover” S?  

• Vertex Cover is a special case where each 
element is in exactly 2 sets. 

 



NP reductions 

• 3-color ⇒ 3-SAT ⇒ Independent Set ⇒ Clique 

• Independent Set ⇒ Vertex Cover ⇒ Set Cover 

• Hamiltonian Cycle ⇒ Traveling Salesman Problem 

• Idea: Given NP-complete problem A; problem B 
in NP.  If A reduces to B than every NP-problem 
reduces to B.  Therefore B is NP-complete. 

• Implementation: Write an efficient procedure for 
A assuming a subroutine that solves B.   

 

 



3-coloring to 3-SAT 

• Given a 3-coloring problem G = (V, E), create 3-SAT problem with: 

• Variables 
 x(v, c) ∀ v ∈ V, c ∈ {g, r, b}  

• Clauses 

– ∀(v,u) ∈ E c ∈ {g, r, b} 
¬ x(v, c) ∨ ¬ x(u, c) 

– ∀ v ∈ V 
¬ x(v, g) ∨ ¬ x(v, r) ∨ ¬ x(v, r) 

¬ x(v, g) ∨ ¬ x(v, b) ∨ ¬ x(v, b) 

¬ x(v, b) ∨ ¬ x(v, r) ∨ ¬ x(v, r) 
x(v, g) ∨ x(v, r) ∨ x(v, b) 

• 3-coloring: color vertices of graph g, r, b so that 
adjacent edges do not have same color 

• 3-SAT: is there an assignment simultaneously satisfying 
all clauses  

 



3-SAT to Independent Set 

• Write procedure for 3-SAT given a subroutine computing Independent Set 
(G, k) 
– 3-SAT: is there an assignment simultaneously satisfying all clauses  

– Independent Set: Given (G, k) a graph and integer, are there k nodes in G none of which 
are connected to each other. 
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Independent Set to Clique 

• Write an efficient procedure IndependentSet(G, k) given 
subroutine Clique(G’, k’): 
– Independent Set: Given (G, k) a graph and integer, are there k nodes in 

G none of which are connected to each other. 

– Clique: Given (G, k) a graph and integer:  Are there k nodes in G that 
are all connected to each other? 

• Ask Clique (G’, k) where G’ is G with “opposite” edges.  

 



Independent Set to Vertex Cover 

• Write an efficient procedure IndependentSet(G, k) given subroutine 
VertexCover (G’, k’): 

– Independent Set: Given (G, k) a graph and integer, are there k nodes in G none 
of which are connected to each other. 

– VertexCover: Given (G, k) a graph and integer:  Are there k nodes in G that are 
incident on all edges?  

• Given IndependentSet problem (G, k)  
Ask Vertex Cover (G, |V|- k) 



Vertex Cover to Set Cover 

• Write an efficient procedure VertexCover(G, k) given subroutine 
SetCover(S, S1,…, Sm, k’): 

– VertexCover: Given (G, k) a graph and integer:  Are there k nodes in G that are 
incident on all edges?  

– SetCover: Given list of items S and subsets of S: S1, S2, …, Sm and integer k: are 
there k subsets that “cover” S?  

 

• Given VertexCover problem (G = (V, E), k), let S  = E, ∀𝑣 ∈ 𝑉 𝑙𝑒𝑡   𝑆𝑣 =
𝑒 ∈ 𝐸: 𝑒 = 𝑣,∗ , k’ = k  

 



Clique to ½-Clique 

• Write an efficient procedure Clique(G, k) given 
subroutine ½-Clique(G). 
– ½ - Clique (G): Does G have |V|/2 nodes that are all 

connected to each other?  
– Clique(G, k): Given (G, k) a graph and integer:  Are 

there k nodes in G that are all connected to each 
other? 

• Given Clique problem (G, k) create ½-clique 
problem G’ where you create |V| new vertices 
and attach |V|-k of them to every other vertex 
(new and old).  



Hamiltonian Cycle to TSP 

• Write a program that solves Hamiltonian Cycle  
• You are have a subroutine TSP(all pair distances D, int k) 

that reports the solution to TSP 
– Hamiltonian Cycle: given a graph, is there a cycle which visits all 

vertices exactly once? 
– TSP: Given a list of cities and pairwise distances between them, 

is there a tour which visits each city exactly once and has length 
at most k?  

• Given G = (V, E) create D where distance between u and v is  
–  1 if (u,v) ∈ E 
–  2 if (u,v) ∉ E 

• Report back TSP(D, |V|) 
 
  

 



So What Now? 

• Relax worst case 

– Use CPLEX/SAT solver 

• Relax time constraints 

• Relax exact optimal 

– Can we closely approximate? 



Combinatorial Optimization Problems 

NP 
-complete 

P Matching 
Network Flow 
Min Cut 

3SAT 
Coloring 
Integer Programming 
Vertex Cover 
Traveling Salesman 
3XOR 
 



Approx Combinatorial Optimization 

PTAS 

P 

log(n) 

2 

log2(n) 

TSP 



Proving coNP statements 

• Resolution 𝑥 ∨ 𝐴 ∧ ¬𝑥 ∨ 𝐵 ⇒ 𝐴 ∨ 𝐵  

• Can try to take 3-SAT formula and resolve! 

• Thm: any false statement will resolve to 
  𝑥 ∧ ¬𝑥  

• Thm: “RANDOM” 3-Sat will take time 2n to 
resolve. 

• Phases of hardness 



Approximation Algorithms 

• Cannot solve Vertex Cover, but can we find a 
good approximation for it? 

• Recall VertexCover: Given (G, k) a graph and 
integer:  Are there k nodes in G that are 
incident on all edges?  

• Can we approximate it? 

• Wait! That would require us to prove an 
approximate coNP statement: that the 
VertexCover is not too small. 

 



Approximating Vertex Cover 

• Recall VertexCover: Given (G, k) a graph and 
integer:  Are there k nodes in G that are incident 
on all edges?  

• A maximal matching M is a set of edges such that 
– Each vertex is incident on at most one edge in M  
– No edge can be added without violating first condition 

• Let M be Maximal matching and S any minimum 
vertex cover: then 𝑀 ≤ 𝑆 ≤ 2 𝑀  
– 𝑀 ≤ 𝑆  because u, v ∈ 𝑀 ⇒ 𝑢 ∈ 𝑆 𝑜𝑟 𝑣 ∈ 𝑆 
– 𝑆 ≤ 2 𝑀  because the vertices of M are a vertex 

cover. 



Approximating Vertex Cover II 

min   𝑣∈𝑉 xv 

  ∀ (𝑢, 𝑣) ∈ 𝐸      xv + xu ≥ 1 

  ∀𝑣 ∈ 𝑉 :  xv ∈ {0, 1} 
0 ≤xv ≤ 1 X

 
IP 

LP 
Integrality Gap =  ≥ 2 by rounding 

≤ 2: complete graph 
 IP = n-1 
 LP = n/2 



Greedy Set Cover 

• SetCover: Given list of n items S and subsets of S: 
S1, S2, …, Sm and integer k: are there k subsets 
that “cover” S?  

• Take largest set, then largest set with respect to 
remaining elements and repeat as necessary. 

• At each step, greedy covers at least a 1/OPT 
fraction of what is left.  So takes at most x steps 

where 𝑛 ∙ 1 −
1

𝑂𝑃𝑇

𝑥
< 1 so x = O(log(n))*OPT 


