
Infinity And Diagonalization

Attribution

• These slides were prepared for the New Jersey
Governor’s School course “The Math Behind
the Machine” taught in the summer of 2012
by Grant Schoenebeck

• Large parts of these slides were copied or
modified from a previous years’ course given
by Ryan and Virginia Williams in 2009.

Questions?

Questions about infinity

• Is infinity one number?

• If you add one to infinity, you get infinity:

– What if you square infinity?

– What if you index infinity by itself?

The Ideal Computer

• An Ideal Computer is defined as a computer
with infinite memory.

– Unlimited memory

– Unlimited time

– can run a Java program and never have any
overflow or out of memory errors.

Ideal Computers and Computable
Numbers

An Ideal Computer Can Be Programmed To Print Out:

• : 3.14159265358979323846264…

• 2: 2.0000000000000000000000…

• e: 2.7182818284559045235336…

• 1/3: 0.33333333333333333333….

Computable Real Numbers

• A real number r is computable if there is a
program that prints out the decimal
representation of r from left to right. Any
particular digit of r will eventually be printed
as part of the output sequence.

Are all real numbers

computable?

Describable Numbers

• A real number r is describable if it can be
unambiguously denoted by a finite piece of
English text.

• 2: “Two.”

• : “The area of a circle of radius one.”

Is every computable real number,
also a describable real number?

Computable r: some program outputs r

Describable r: some sentence denotes r

Are all real numbers
describable?

To INFINITY ….
and Beyond!

Bijections

Let S and T be sets.

A function f from S to T is a bijection if:

f is “one to one”: x ≠ y implies f(x) ≠ f(y)

f is “onto”: for every t in T, there is an s in S such that
f(s) = t

Intuitively: The elements of S can all be paired up with
the elements of T

S T
f

Note: if there is a bijection from S to T
then there is a bijection from T to S!

So it makes sense to say “bijection between A and B”

Correspondence Definition

• Two finite sets S and T are
defined to have the
same size if and only if there is
a bijection from S to T.

Georg Cantor (1845-1918)

Cantor’s Definition (1874)

• Two infinite sets are defined to
have the same size

• if and only if there is a bijection
between them.

Cantor’s Definition (1874)

• Two infinite sets are defined to
have the same cardinality

• if and only if there is a bijection
between them.

Do N and E have the same cardinality?

• N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

E = { 0, 2, 4, 6, 8, 10, 12, 14, … }

E and N do not have the same
cardinality!

E is a proper subset of N with
plenty left over.

That is, f(x)=x does not work as a

bijection from N to E

E and N do have the same
cardinality!

0, 1, 2, 3, 4, 5, …

f |
 0, 2, 4, 6, 8, 10, …

f(x) = 2x is a bijection

from N to E!

Lessons:

Just because some bijection doesn’t
work, that doesn’t mean another
bijection won’t work!

Infinity is a mighty big place.
It allows the even numbers to have
room to accommodate all the
natural numbers

Do N and Z have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. }

Z = { …, -2, -1, 0, 1, 2, 3, …. }

No way! Z is infinite in two

ways: from 0 to positive infinity
and from 0 to negative infinity.

Therefore, there are far more

integers than naturals.

Actually,
no…

N and Z do have the same
cardinality!

0, 1, 2, 3, 4, 5, 6 …
0, 1, -1, 2, -2, 3, -3, ….

f(x) = x/2 if x is odd
 -x/2 if x is even

Transitivity Lemma

• If f: AB and g: BC are bijections,

• Then
h(x) = g(f(x)) is a bijection from AC

• It follows that N, E, and Z

• all have the same cardinality.

Do N and Q have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. }

Q = The Rational Numbers
 (All possible fractions!)

No way!
The rationals are dense:

between any two there is a
third. You can’t list them one
by one without leaving out an

infinite number of them.

Don’t jump to conclusions!
There is a clever way to list

the rationals, one at a
time, without missing a

single one!

First, let’s warm up
with another

interesting one:

N can be paired with

NxN

Theorem: N and N x N have the same
cardinality

0 1 2 3 4 …

…

4

3

2

1

0

The point (x,y)
represents the

ordered pair (x,y)

Theorem: N and N x N have the same
cardinality

0 1 2 3 4 …

…

4

3

2

1

0 0

1

2

3

4

5

6

7

8

9

The point (x,y)
represents the

ordered pair (x,y)

On to the Rationals!

The point at x,y represents x/y

The point at x,y represents x/y

3
2

0

1

1877 letter to Dedekind:

I see it, but I don't believe it!

•

We call a set countable if
it has a bijection with the

natural numbers.

So far we know that N, E,
Z, and Q are countable.

Do N and R have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. }

 R = The Real Numbers

No way!
You will run out of natural
numbers long before you

match up every real.

Don’t jump to conclusions!

You can’t be sure that there
isn’t some clever

correspondence that you
haven’t thought of yet.

I am sure!
Cantor proved it.

He invented a very
important technique called

“DIAGONALIZATION”

Theorem: The set I of reals between 0
and 1 is not countable.

• Proof by contradiction:
• Suppose I is countable.
• Let f be the bijection from N to I. Make a

list L as follows:

• 0: decimal expansion of f(0)
1: decimal expansion of f(1)

• …
• k: decimal expansion of f(k)
• …

Theorem: The set I of reals between 0
and 1 is not countable.

Proof by contradiction:

Suppose I is countable.

Let f be the bijection from N to I. Make a list L
as follows:

(This must be a complete list of I)

0: .3333333333333333333333…
1: .3141592656578395938594982..

…

k: .345322214243555345221123235..

…

L 0 1 2 3 4 …

0 3 3 3 3 3 3

1 3 1 4 5 9 2

2 …

3

…

L 0 1 2 3 4 …

0 d0

1 d1

2 d2

3 d3

… …

L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

ConfuseL = . C0 C1 C2 C3 C4 C5 …

L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

1, if dk=2

2, otherwise
Ck=

ConfuseL = . C0 C1 C2 C3 C4 C5 …

Claim:

ConfuseL is

not in the list L!

L 0 1 2 3 4

0

1 d1

2 d2

3 d3

… …

C0d0 C1 C2 C3 C4 …

1, if dk=2

2, otherwise
Ck=

Claim:

ConfuseL is

not in the list L!

L 0 1 2 3 4

0 d0

1

2 d2

3 d3

… …

C0 C1d1 C2 C3 C4 …

1, if dk=2

2, otherwise
Ck=

Claim:

ConfuseL is

not in the list L!

L 0 1 2 3 4

0 d0

1 d1

2

3 d3

… …

C0 C1 C2d2 C3 C4 …

1, if dk=2

2, otherwise
Ck=

Claim:

ConfuseL is

not in the list L!

L 0 1 2 3 4

0 d0

1 d1

2

3 d3

… …

ConfuseL differs from the kth element of L in
the kth position. This contradicts our

assumption that list L has all reals in I.

C0 C1 C2d2 C3 C4 …

1, if dk=2

2, otherwise
Ck=

Claim:

ConfuseL is

not in the list L!

The set of reals is
uncountable!

Hold it!
Why can’t the same

argument be used to show
that Q is uncountable?

The argument works the
same for Q until the very

end. ConfuseL is not
necessarily a rational

number, so there is no
contradiction from the

fact that it is missing from
list L.

Standard Notation

Σ = Any finite alphabet

Example: {a,b,c,d,e,…,z}

Σ* = All finite strings of symbols
 from S including the empty
 string e

Theorem: Every infinite subset S of Σ*

is countable

• Proof: Sort S by first by length and then
alphabetically. Map the first word to 0, the
second to 1, and so on….

Stringing Symbols Together

 Σ = The symbols on a standard
 keyboard

The set of all possible Java
programs is a subset of Σ*

The set of all possible finite pieces
of English text is a subset of Σ*

Thus:

The set of all possible
Java programs is

countable.

The set of all possible
finite length pieces of

English text is countable.

There are countably many
Java programs and

uncountably many reals.

HENCE:

MOST REALS ARE NOT
COMPUTABLE.

There are countably many
descriptions and uncountably

many reals.

Hence:
MOST REAL NUMBERS ARE

NOT DESCRIBABLE IN
ENGLISH!

Is there a real number
that can be described,
but not computed by

any program?

We know there are
at least 2 infinities.

Are there more?

Power Set

• The power set of S is the set of all subsets of S.

• The power set is denoted P(S).

• Proposition: If S is finite, the power set of S
has cardinality 2|S|

Theorem: S can’t be put into 1-1
correspondence with P(S)

• Suppose f:S->P(S) is 1-1 and ONTO.

A

B

C

S

{B}



{A}

{C}

P(S)

{A,B}

{B,C}
{A,C}

{A,B,C}

Theorem: S can’t be put into 1-1
correspondence with P(S)
• Suppose f:S->P(S) is 1-1 and ONTO.

Let CONFUSE = { x ∈ S, x  f(x) }

There is some y such that f(y)=CONFUSE

A

B

C

S

{
B
}



{A
}

{
C
}

P(S)

{A,B}

{B,
C}

{A,C
}

{A,B,
C}

Is y in CONFUSE?

YES: Definition of CONFUSE implies no

NO: Definition of CONFUSE implies yes

This proves that there
are at least a countable

number of infinities.

The first infinity is
called:

 0

0, 1,2,…

Are there any

more

infinities?

0, 1,2,…

Let S = {k | k ∈ N }
P(S) is provably larger

than any of them.

In fact, the same

argument can be

used to show that

no single infinity is

big enough to count

the number of

infinities!

0, 1,2,…
Cantor wanted to show

that the number of

reals was 1

Cantor called his
conjecture that 1 was
the number of reals the
“Continuum Hypothesis.”
However, he was unable
to prove it. This helped

fuel his depression.

The Continuum
Hypothesis can’t be
proved or disproved
from the standard

axioms of set theory!
This has been proved!

In fact it was proved here in New
Jersey, by professors at the

Institute for Advanced Study!

David Hilbert (1862-1943)

• Who among us would not be happy to lift the
veil behind which is hidden the future; to gaze at
the coming developments of our science and at
the secrets of its development in the centuries to
come? What will be the ends toward which the
spirit of future generations of mathematicians
will tend? What methods, what new facts will
the new century reveal in the vast and rich field
of mathematical thought?

• In mathematics there is no ignorabimus.

http://en.wikipedia.org/wiki/File:Hilbert.jpg

The HELLO WORLD assignment

•Suppose your teacher tells you:
•Write a JAVA program to output the
word “HELLO WORLD” on the screen
and halt.

•Space and time are not an issue.
The program is for an ideal computer.

•PASS for any working HELLO program, no partial
credit.

Teacher’s Grading Program

•The grading program G must be able to take
any Java program P and grade it.

• Pass, if P prints “HELLO WORLD”
G(P)=

• Fail, otherwise.

How exactly might such a script work?

What kind of program
could a student who hated
his/her teacher hand in?

Nasty Program

•n:=2;
•While (the number 2n can be written as the sum of two
primes)
• n++;
•Print “HELLO WORLD”;

•The nasty program is a PASS if and only if the Goldbach
conjecture is false.

Despite the simplicity of
the HELLO WORLD

assignment, there is no
program to correctly

grade it!
This can be proved.

The theory of what can
and can’t be computed by
an ideal computer is called

Computability Theory
or Recursion Theory.

The Ideal Memory Model

• = finite alphabet of symbols

•Each memory location holds one element of 

•“Abstract” Version: One memory location for each
natural number 0, 1, 2, …

•“Practical” Version: Any time you start to run out of
memory, the computer contacts the factory. A
maintenance person is flown by helicopter and
attaches 100 Terabytes of RAM to the computer.



Computable Functions
•Fix any precise programming language, i.e., Java.

•A program is any finite string of symbols from  that a Java
interpreter will run (won’t give a syntax error)

•Recall * is the set of all strings of symbols.

•A function f : * -> * is computable if there is a program P
that computes f, when P is executed on a computer with
ideal memory.

•That is, for all strings x in *, P(x) = f(x).

There are “countably
many” Java programs.
Hence, there are only

“countably many”
computable functions.

Are there countably
many functions from

 * to * ?

Theorem: There are uncountably many
functions!

•There is a bijection between
 - The set of all subsets of *

 (the powerset of *)
- The set of all functions f: * -> {0,1}

•Take a subset S of *, we map it to the function
f where:

•f(x) = 1 x in S

•f(x) = 0 x not in S

Uncountably many functions.

•There is a bijection between
 - The set of all subsets of *

 (the powerset of *)
- The set of all functions f: * - > {0,1}

•So the set of all f: * -> {0,1} has the same size as
the powerset of *
•But * is countable, so the powerset of * is
uncountable!
•(No bijection between * and Power(*)!)

So there are functions
from * to {0,1} that are

not computable.

Can we describe an
incomputable one?
Can we describe an

interesting, incomputable
function?

Notation And Conventions

– Fix any programming language

– When we refer to “program P” we mean the text
of the source code for P

– P(x) is the final output of program P on input x,
assuming that P eventually halts

P(P)

•It follows from our conventions that P(P) is the
output obtained when we run P on the text of
its own source code.

P(P) … So that’s what I look like

The Famous Halting Set: K

•K is the set of all programs P
such that P(P) halts.

•K = { Program P | P(P) halts}

The Halting Problem

•Is there a program HALT such that:

•HALT(P) = yes, if P(P) halts

•HALT(P) = no, if P(P) does not halt

The Halting Problem
K = {P | P(P) halts }

•Is there a program HALT such that:

•HALT(P) = yes, if PK

•HALT(P) = no, if PK

•HALTS decides whether or not any given
program is in K.

THEOREM: There is no program that
can solve the halting problem!

(Alan Turing 1937)

•Suppose a program HALT, solving the halting
problem, existed:

•HALT(P) = yes, if P(P) halts
•HALT(P) = no, if P(P) does not halt

• We will call HALT as a subroutine in a new
program called WEIRD.

•

•The Program WEIRD(P):

•If HALT(P) then go into an infinite loop.

•Else stop.

•<Put text of subroutine HALT here>

•Does WEIRD(WEIRD) halt or not?

• YES implies HALT(WEIRD) = yes

• but then, WEIRD(WEIRD) will infinite loop

• NO implies HALT(WEIRD) = no

• but then, WEIRD(WEIRD) halts

CONTRADICTION

Turing’s argument is
just like the

DIAGONALIZATION
argument from the theory

of infinities.

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

YES, if Pi(Pj) halts

NO, otherwise

YES, if Pi(Pj) halts

NO, otherwise

di = HALT(Pi)

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

… …

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

… …

WEIRD(Pi) halts iff di = NO
The WEIRD row contains the
opposite of the diagonal…

W E I R D
di = HALT(Pi)

Alan Turing (1912-1954)

Is there a real
number that can be
described, but not

computed?

Consider the real
number between 0
and 1, which has a 1

in the ith decimal
place if Pi is in K,
and 0 otherwise

Computability Theory:
Vocabulary Lesson

•We call a set S  * decidable
if there is a program P such that:

• P(x) = yes, if x  S

• P(x) = no, if x  S

•We already know: K is undecidable

Now that we have

established that the

Halting Set K is

undecidable, we can use

it as a starting point for

more “natural”

undecidability results.

Oracle

for S

Oracle For Set S

Is xS?

YES/NO

Example Oracle
 S = Odd Naturals

Oracle

for S

4

?
No

81?

Yes

L = the set of programs that take no input and halt

GIVEN:

Oracle

for L

Hey, I ordered an
oracle for the

famous halting set
K, but when I
opened the

package it was an
oracle for the

different set L.

GIVEN:

Oracle

for L

P ; Q ≡ simulates P using P as input

Does P(P) halt?

BUILD:

Oracle

for K

Does the program

Q

halt?

L = the set of programs that take no input and halt

Thus, if L were decidable

then K would be as well.

(If there were a program

for L, there’d be one for K,

too!)

 We already know K is not

decidable. Therefore L is

also not decidable!

HELLO = the set of programs that print HELLO and halt

GIVEN:

HELLO

Oracle

Does P halt?

BUILD:

Oracle

for L

Let P’ be P with all print

statements removed.

Does

[P’; Print HELLO]

ever print HELLO?

If there were a program

for HELLO, then there’d

be a program for L.

But L is not decidable.

So HELLO is not

decidable.

EQUAL = All <P,Q> such that P and Q have

identical outputs on all inputs

GIVEN:

EQUAL

Oracle

Does P equal

HELLO ?

BUILD:

HELLO

Oracle

Let H = [Print HELLO]

Are P and H equal?

Halting with input,

Halting without input,

The “Hello World”

assignment, and

EQUAL are not

decidable.

What about problems

that have no obvious

relation to halting, or

even to computation can

encode the Halting

Problem is non-obvious

ways?

Diophantine equations

• 𝑎𝑘 + 𝑏𝑘 = 𝑐𝑘

• 𝑥𝑦2 − 𝑥𝑧 = 𝑝

• Hilberts 10th problem was to find a solution to
such equations.

Puzzle Pieces

• Given a finite set of puzzle pieces, can you tile
the plane (you are allowed to use each piece
arbitrarily often)?

PHILOSOPHICAL

INTERLUDE

CHURCH-TURING THESIS

•Any well-defined procedure that can
be grasped and performed by the
human mind and pencil/paper, can be
computed on a conventional digital
computer with no bound on its
memory.

The Church-Turing Thesis is NOT a theorem. It
is a statement of belief about the universe we

live in.

•Your opinion will be influenced by your
religious, scientific, and philosophical beliefs.

Empirical Intuition

•No one has ever given a counter-example to
the Church-Turing thesis. That is, no one has
given a concrete example of something that
humans can compute in a consistent and well
defined way, that also can’t be programmed on
a computer.

•The thesis is true.

Mechanical Intuition

•The brain is a machine. The components of the
machine obey physical laws.

•In principle, an entire brain can be simulated
step by step on a digital computer. Thus, any
thoughts of such a brain can be computed by a
simulating computer. The thesis is true.

Spiritual Intuition

•The mind consists of part matter and also part
soul. Soul, by its very nature, cannot be reduced
to physical laws. Thus, the action and thoughts
of the brain cannot be simulated or reduced to
simple components and rules. The thesis is false.

Do these theorems about

the limits of computation

tell us something about

the limitations of human

thought?

