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Questions? 

Questions about infinity 

• Is infinity one number? 

• If you add one to infinity, you get infinity: 

– What if you square infinity? 

– What if you index infinity by itself? 



The Ideal Computer 
 

• An Ideal Computer is defined as a computer 
with infinite memory.  

– Unlimited memory 

– Unlimited time 

– can run a Java program and never have any 
overflow or out of memory errors. 



Ideal Computers and Computable 
Numbers 

An Ideal Computer Can Be Programmed To Print Out: 

• : 3.14159265358979323846264… 

• 2: 2.0000000000000000000000… 

• e: 2.7182818284559045235336… 

• 1/3: 0.33333333333333333333…. 



Computable Real Numbers 

• A real number r is computable if there is a 
program that prints out the decimal 
representation of r from left to right. Any 
particular digit of r will eventually be printed 
as part of the output sequence. 

Are all real numbers 

computable? 



Describable Numbers 

• A real number r is describable if it can be 
unambiguously denoted by a finite piece of 
English text. 

 

• 2: “Two.” 

• : “The area of a circle of radius one.” 

 

 

 



Is every computable real number,  
also a describable real number? 

Computable r: some program outputs r 

Describable r: some sentence denotes r 



Are all real numbers 
describable? 



To INFINITY ….  
and Beyond! 



Bijections 

Let S and T be sets. 

A function f from S to T is a bijection if: 

 

f  is “one to one”: x ≠ y implies f(x) ≠ f(y) 

 

f is “onto”: for every  t in T, there is an s in S such that 
f(s) = t 

 

Intuitively: The elements of S can all be paired up with 
the elements of T 



S T 
f 

Note: if there is a bijection from S to T  
then there is a bijection from T to S! 

So it makes sense to say “bijection between A and B” 



Correspondence Definition 

• Two finite sets S and T are 
defined to have the  
same size if and only if there is 
a bijection from S to T. 



Georg Cantor (1845-1918) 

 



Cantor’s Definition (1874) 

• Two infinite sets are defined to 
have the same size  

• if and only if there is a bijection 
between them. 



Cantor’s Definition (1874) 

• Two infinite sets are defined to 
have the same cardinality  

• if and only if there is a bijection 
between them. 



Do N and E have the same cardinality? 

• N = { 0, 1, 2, 3, 4, 5, 6, 7, … } 

 

E = { 0, 2, 4, 6, 8, 10, 12, 14, … } 
 



E and N do not have the same 
cardinality!  

E is a proper subset of N with 
plenty left over.   

 
That is, f(x)=x does not work as a 

bijection from N to E 

 



E and N do have the same 
cardinality! 

 
0,  1,  2,  3,  4,  5,  …  

f                                      |                    
  0,  2,  4,  6,  8,  10,  …   

 
f(x) = 2x  is a bijection 

from N to E!   
 



Lessons:  
 
Just because some bijection doesn’t 
work, that doesn’t mean another 
bijection won’t work! 
 
Infinity is a mighty big place. 
It allows the even numbers to have 
room to accommodate all the 
natural numbers 
 
 



Do N and Z have the same cardinality? 

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. } 

 

Z = { …, -2, -1, 0, 1, 2, 3, …. } 



No way! Z is infinite in two 

ways: from 0 to positive infinity 
and from 0 to negative infinity.   

 
Therefore, there are far more 

integers than naturals. 

Actually, 
no… 



N and Z do have the same 
cardinality! 

 
0, 1,  2, 3,  4, 5,   6 … 
0, 1, -1, 2, -2, 3, -3, …. 

 
f(x) = x/2   if x is odd 
           -x/2    if x is even 

 



Transitivity Lemma 

• If   f: AB  and  g: BC  are bijections,  

• Then  
h(x) = g(f(x)) is a bijection from AC 

 

• It follows that N, E, and Z  

• all have the same cardinality. 



Do N and Q have the same cardinality? 

 

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. } 

 

Q = The Rational Numbers 
       (All possible fractions!) 



No way! 
The rationals are dense: 

between any two there is a 
third. You can’t list them one 
by one without leaving out an 

infinite number of them. 



Don’t jump to conclusions! 
There is a clever way to list 

the rationals, one at a 
time, without missing a 

single one! 



First, let’s warm up 
with another 

interesting one: 

N can be paired with 

NxN 



Theorem: N and N x N have the same 
cardinality 

0 1 2 3 4 … 

… 

4 

3 

2 

1 

0 

The point (x,y) 
represents the 

ordered pair (x,y) 

 



Theorem: N and N x N have the same 
cardinality 

0 1 2 3 4 … 

… 

4 

3 

2 

1 

0 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

The point (x,y) 
represents the 

ordered pair (x,y) 

 



 
On to the Rationals! 



The point at x,y represents x/y 



The point at x,y represents x/y 

3 
2 

0 

1 



1877 letter to Dedekind: 
 

I see it, but I don't believe it!  

•   



We call a set countable if 
it has a bijection with the 

natural numbers. 
 

So far we know that N, E, 
Z, and Q are countable. 



Do N and R have the same cardinality? 

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. } 

 

 R = The Real Numbers 



No way! 
You will run out of natural 
numbers long before you 

match up every real. 



Don’t jump to conclusions! 
 

You can’t be sure that there 
isn’t some clever 

correspondence that you 
haven’t thought of yet. 



I am sure! 
Cantor proved it. 

He invented a very 
important technique called 

“DIAGONALIZATION” 



Theorem: The set I of reals between 0 
and 1 is not countable. 

• Proof by contradiction: 
• Suppose I is countable.  
• Let f be the bijection from N to I. Make a 

list L as follows: 
 

• 0:  decimal expansion of f(0) 
1:  decimal expansion of f(1) 

• … 
• k:  decimal expansion of f(k) 
• … 



Theorem: The set I of reals between 0 
and 1 is not countable. 

Proof by contradiction: 

Suppose I is countable.  

Let f be the bijection from N to I. Make a list L 
as follows: 

(This must be a complete list of I) 

0:  .3333333333333333333333… 
1:  .3141592656578395938594982.. 

… 

k:  .345322214243555345221123235.. 

… 



L 0 1 2 3 4 … 

0 3 3 3 3 3 3 

1 3 1 4 5 9 2 

2 … 

3 

… 



L 0 1 2 3 4 … 

0 d0 

1 d1 

2 d2 

3 d3 

… … 



L 0 1 2 3 4 

0 d0 

1 d1 

2 d2 

3 d3 

… … 

ConfuseL = . C0    C1     C2     C3     C4     C5  … 



L 0 1 2 3 4 

0 d0 

1 d1 

2 d2 

3 d3 

… … 

1, if   dk=2 

2, otherwise 
Ck= 

ConfuseL = . C0    C1     C2     C3     C4     C5  … 

Claim: 

ConfuseL  is  

not  in the list L! 
 



L 0 1 2 3 4 

0 

1 d1 

2 d2 

3 d3 

… … 

C0d0 C1     C2     C3     C4    … 

1, if   dk=2 

2, otherwise 
Ck= 

Claim: 

ConfuseL  is  

not  in the list L! 
 



L 0 1 2 3 4 

0 d0 

1 

2 d2 

3 d3 

… … 

C0   C1d1   C2     C3     C4    … 

1, if   dk=2 

2, otherwise 
Ck= 

Claim: 

ConfuseL  is  

not  in the list L! 
 



L 0 1 2 3 4 

0 d0 

1 d1 

2 

3 d3 

… … 

C0       C1   C2d2  C3     C4    … 

1, if   dk=2 

2, otherwise 
Ck= 

Claim: 

ConfuseL  is  

not  in the list L! 
 



L 0 1 2 3 4 

0 d0 

1 d1 

2 

3 d3 

… … 

ConfuseL differs from the kth element of L in 
the kth position. This contradicts our 

assumption that list L has all reals in I. 

C0       C1   C2d2  C3     C4    … 

1, if   dk=2 

2, otherwise 
Ck= 

Claim: 

ConfuseL  is  

not  in the list L! 
 



The set of reals is 
uncountable! 



Hold it! 
Why can’t the same 

argument be used to show 
that Q is uncountable? 



The argument works the 
same for Q until the very 

end. ConfuseL is not 
necessarily a rational 

number, so there is no 
contradiction from the 

fact that it is missing from 
list L. 



Standard Notation 

Σ = Any finite alphabet 

Example: {a,b,c,d,e,…,z} 

 

Σ* = All finite strings of symbols            
   from S including the empty         
   string e 

 



Theorem: Every infinite subset S of Σ* 

is countable 

• Proof: Sort S by first by length and then 
alphabetically. Map the first word to 0, the 
second to 1, and so on…. 



Stringing Symbols Together 

 Σ = The symbols on a standard                        
  keyboard 

The set of all possible Java 
programs is a subset of Σ* 

 

The set of all possible finite pieces 
of English text is a subset of Σ* 

 



Thus: 
 

The set of all possible 
Java programs is 

countable. 
 

The set of all possible 
finite length pieces of 

English text is countable. 



There are countably many 
Java programs and 

uncountably many reals. 
 

HENCE: 
 

MOST REALS ARE NOT 
COMPUTABLE. 



There are countably many 
descriptions and uncountably 

many reals. 
  

Hence: 
MOST REAL NUMBERS ARE 

NOT DESCRIBABLE IN 
ENGLISH! 



Is there a real number 
that can be described, 
but not computed by 

any program? 



We know there are 
at least 2 infinities. 

Are there more? 



Power Set 

• The power set of S is the set of all subsets of S.  

 

• The power set is denoted P(S). 

 

• Proposition: If S is finite, the power set of S 
has cardinality 2|S| 



Theorem: S can’t be put into 1-1 
correspondence with P(S) 

• Suppose f:S->P(S) is 1-1 and ONTO. 

A 

B 

C 

S 

{B} 

 

{A} 

{C} 

P(S) 

{A,B} 

{B,C} 
{A,C} 

{A,B,C} 



Theorem: S can’t be put into 1-1 
correspondence with P(S) 
• Suppose f:S->P(S) is 1-1 and ONTO. 

Let CONFUSE = { x ∈ S, x  f(x) } 

There is some y such that f(y)=CONFUSE 

A 

B 

C 

S 

{
B
} 

 

{A
} 

{
C
} 

P(S) 

{A,B} 

{B,
C} 

{A,C
} 

{A,B,
C} 

Is y in CONFUSE? 

YES: Definition of CONFUSE implies no 

NO: Definition of CONFUSE implies yes 



This proves that there 
are at least a countable 

number of infinities. 
 

The first infinity is 
called: 

 0 



0, 1,2,… 

 
Are there any 

more 

infinities? 
 



0, 1,2,… 

 
Let S = {k | k ∈ N } 
P(S) is provably larger 

than  any of them.  

 



In fact, the same 

argument can be 

used to show that 

no single infinity is 

big enough to count 

the number of  

infinities! 

 



0, 1,2,… 
Cantor wanted to show 

that the number of 

reals was 1 



Cantor called his 
conjecture that 1 was 
the number of reals the 
“Continuum Hypothesis.”  
However, he was unable 
to prove it.  This helped 

fuel his depression. 



The Continuum 
Hypothesis can’t be 
proved or disproved 
from the standard 

axioms of set theory! 
This has been proved! 

 

In fact it was proved here in New 
Jersey, by professors at the 

Institute for Advanced Study! 



David Hilbert (1862-1943) 

• Who among us would not be happy to lift the 
veil behind which is hidden the future; to gaze at 
the coming developments of our science and at 
the secrets of its development in the centuries to 
come? What will be the ends toward which the 
spirit of future generations of mathematicians 
will tend? What methods, what new facts will 
the new century reveal in the vast and rich field 
of mathematical thought? 

 

• In mathematics there is no ignorabimus. 

 

http://en.wikipedia.org/wiki/File:Hilbert.jpg


The HELLO WORLD assignment 

•Suppose your teacher tells you: 
•Write a JAVA program to output the 
word “HELLO WORLD” on the screen 
and halt. 

 
•Space and time are not an issue.  
The program is for an ideal computer.  
 
•PASS for any working HELLO program, no partial 
credit. 



Teacher’s Grading Program 

•The grading program G must be able to take 
any Java program P and grade it. 

 

•           Pass, if P prints  “HELLO WORLD”          
G(P)=    

•           Fail, otherwise. 

How exactly might such a script work? 



What kind of program 
could a student who hated 
his/her teacher hand in? 



Nasty Program 

•n:=2; 
•While  (the number 2n can be written as the sum of two 
primes)  
• n++; 
•Print “HELLO WORLD”; 
 
 
•The nasty program is a PASS if and only if the Goldbach 
conjecture is false. 



Despite the simplicity of 
the HELLO WORLD 

assignment, there is no 
program to correctly 

grade it!  
This can be proved. 



The theory of what can 
and can’t be computed by 
an ideal computer is called  

Computability Theory  
or Recursion Theory.  



The Ideal Memory Model 

• = finite alphabet of symbols  

•Each memory location holds one element of  

 

•“Abstract” Version: One memory location for each 
natural number 0, 1, 2, … 
 

•“Practical” Version: Any time you start to run out of 
memory, the computer contacts the factory. A 
maintenance person is flown by helicopter and 
attaches 100 Terabytes of RAM to the computer. 

 



Computable Functions 
•Fix any precise programming language, i.e., Java.  

•A program is any finite string of symbols from  that a Java 
interpreter will run (won’t give a syntax error) 
 

•Recall * is the set of all strings of symbols. 
 

•A function f : * -> * is computable if there is a program P 
that computes  f, when P is executed on a computer with 
ideal memory.  

•That is, for all strings x in *, P(x) = f(x).  



There are “countably 
many” Java programs. 
Hence, there are only 

“countably many” 
computable functions. 



Are there countably 
many functions from 

 * to * ? 



Theorem: There are uncountably many 
functions! 

•There is a bijection between  
 - The set of all subsets of *  

 (the powerset of * ) 
- The set of all functions f: * -> {0,1} 

 

•Take a subset S of *, we map it to the function 
f where: 

•f(x)  = 1   x in S 

•f(x)  = 0   x not in S    



Uncountably many functions. 

•There is a bijection between  
 - The set of all subsets of *  

 (the powerset of * ) 
- The set of all functions f: * - > {0,1} 
 
•So the set of all f: * -> {0,1} has the same size as 
the powerset of * 
•But * is countable, so the powerset of *  is 
uncountable!  
•(No bijection between * and Power(*)!)  



So there are functions 
from * to {0,1} that are 

not computable.  
 

Can we describe an 
incomputable one?   
Can we describe an 

interesting, incomputable 
function? 



Notation And Conventions 

– Fix any programming language 

– When we refer to “program P” we mean the text 
of the source code for P 

– P(x) is the final output of program P on input x, 
assuming that P eventually halts 



P(P) 

•It follows from our conventions that P(P) is the 
output obtained when we run P on the text of 
its own source code. 



P(P) … So that’s what I look like 



The Famous Halting Set: K 

•K is the set of all programs P 
such that P(P) halts. 
 
•K = { Program P | P(P) halts} 



The Halting Problem 

•Is there a program HALT such that: 

 

•HALT(P)  =     yes, if P(P) halts 

•HALT(P)  =     no,   if P(P) does not halt 



The Halting Problem 
K = {P | P(P) halts } 

•Is there a program HALT such that: 

 

•HALT(P)  =     yes, if PK 

•HALT(P)  =     no,   if PK 

 

•HALTS decides whether or not any given 
program is in K.  



THEOREM: There is no program that 
can solve the halting problem! 

(Alan Turing 1937) 

•Suppose a program HALT, solving the halting 
problem, existed: 
 
•HALT(P)  =     yes, if P(P) halts 
•HALT(P)  =     no,   if P(P) does not halt 
 
• We will call HALT as a subroutine in a new 
program called WEIRD. 
 
 
•  



•The Program WEIRD(P): 

•If HALT(P) then go into an infinite loop. 

•Else stop. 

•<Put text of subroutine HALT here> 

 

•Does WEIRD(WEIRD) halt or not? 

 

• YES implies HALT(WEIRD) = yes 

• but then, WEIRD(WEIRD) will infinite loop 

 

• NO implies HALT(WEIRD) = no 

• but then, WEIRD(WEIRD) halts 

CONTRADICTION 



Turing’s argument is  
just like the  

DIAGONALIZATION 
argument from the theory 

of infinities. 



P0 P1 P2 … Pj … 

P0 

P1 

… 

Pi 

 

… 

YES, if  Pi(Pj) halts 

NO,      otherwise 



YES, if  Pi(Pj) halts 

NO,      otherwise 

di = HALT(Pi) 

P0 P1 P2 … Pj … 

P0 d0 

P1 d1 

… … 

Pi di 

 

… … 



P0 P1 P2 … Pj … 

P0 d0 

P1 d1 

… … 

Pi di 

 

… … 

WEIRD(Pi) halts iff di = NO 
The WEIRD row contains the 
opposite of the diagonal…  

W E I R D 
di = HALT(Pi) 



Alan Turing (1912-1954) 



Is there a real 
number that can be 
described, but not 

computed? 



Consider the real 
number between 0 
and 1, which has a 1 

in the ith decimal 
place if Pi is in K, 
and 0 otherwise 



Computability Theory: 
Vocabulary Lesson 

•We call a set S  * decidable  
if there is a program P such that: 

• P(x) = yes, if x  S 

• P(x) = no,  if x  S 

 

•We already know: K is undecidable 



Now that we have 

established that the 

Halting Set K is 

undecidable, we can use 

it as a starting point for 

more “natural” 

undecidability results. 



Oracle 

for S 

Oracle For Set S 

Is xS? 

YES/NO 



Example Oracle 
 S = Odd Naturals 

Oracle 

for S 

4

? 
No 

81? 

Yes 



L = the set of  programs that take no input and halt 

GIVEN:

Oracle 

for L 

Hey, I ordered an 
oracle for the 

famous halting set 
K, but when I 
opened the 

package it was an 
oracle for the 

different set L. 



GIVEN:

Oracle 

for  L 

P ; Q  ≡ simulates P using P as input 

Does P(P) halt? 

BUILD:

Oracle 

for K 

Does the program 

Q  

halt? 

L = the set of  programs that take no input and halt 



Thus, if  L were decidable 

then K would be as well. 

(If  there were a program 

for L, there’d be one for K, 

too!) 

 We already know K is not 

decidable. Therefore L is 

also not decidable! 



HELLO = the set of  programs that print HELLO and halt 

GIVEN:

HELLO 

Oracle  

 

Does P halt? 

BUILD:

Oracle 

for L 

Let P’ be P with all print 

statements removed.  

 

Does 

[P’; Print HELLO] 

ever print HELLO? 

 



If  there were a program 

for HELLO, then there’d 

be a program for L. 

But L is not decidable. 

So HELLO is not 

decidable. 



EQUAL = All <P,Q> such that P and Q have 

identical outputs on all inputs 

GIVEN: 

EQUAL

Oracle  

 
Does P equal 

HELLO ? 

BUILD: 

HELLO

Oracle 

Let H = [Print HELLO] 

 

 

 

 
Are P and H equal? 

 



Halting with input,  

Halting without input, 

The “Hello World” 

assignment, and 

EQUAL are not 

decidable. 



What about problems 

that have no obvious 

relation to halting, or 

even to computation can 

encode the Halting 

Problem is non-obvious 

ways? 



Diophantine equations 

• 𝑎𝑘 + 𝑏𝑘 = 𝑐𝑘 

• 𝑥𝑦2 − 𝑥𝑧 = 𝑝 

• Hilberts 10th problem was to find a solution to 
such equations. 

 



Puzzle Pieces 

• Given a finite set of puzzle pieces, can you tile 
the plane (you are allowed to use each piece 
arbitrarily often)? 

 

 



PHILOSOPHICAL 

INTERLUDE 



CHURCH-TURING THESIS 

•Any well-defined procedure that can 
be grasped and performed by the 
human mind and pencil/paper, can be 
computed on a conventional digital 
computer with no bound on its 
memory. 



The Church-Turing Thesis is NOT a theorem. It 
is a statement of belief about the universe we 

live in. 

•Your opinion will be influenced by your 
religious, scientific, and philosophical beliefs. 



Empirical Intuition 

•No one has ever given a counter-example to 
the Church-Turing  thesis. That is, no one has 
given a concrete example of something that 
humans can compute in a consistent and well 
defined way, that also can’t be programmed on 
a computer.  

•The thesis is true. 



Mechanical Intuition 

•The brain is a machine. The components of the 
machine obey physical laws.  

•In principle, an entire brain can be simulated 
step by step on a digital computer. Thus, any 
thoughts of such a brain can be computed by a 
simulating computer. The thesis is true. 



Spiritual Intuition 

•The mind consists of part matter and also part 
soul. Soul, by its very nature, cannot be reduced 
to physical laws. Thus, the action and thoughts 
of the brain cannot be simulated or reduced to 
simple components and rules. The thesis is false. 



Do these theorems about 

the limits of  computation 

tell us something about 

the limitations of  human 

thought? 


