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Turing’s Legacy:  
The Limits Of Computation. 

Anything 

 

 

 

 

 says is false! 



David Hilbert (1862-1943) 

Who among us would not be happy to lift the 
veil behind which is hidden the future; to 
gaze at the coming developments of our 
science and at the secrets of its 
development in the centuries to come? 
What will be the ends toward which the 
spirit of future generations of 
mathematicians will tend? What methods, 
what new facts will the new century 
reveal in the vast and rich field of 
mathematical thought? 

 

In mathematics there is no ignorabimus. 

 

http://en.wikipedia.org/wiki/File:Hilbert.jpg


The HELLO WORLD assignment 

Suppose your teacher tells you: 
Write a JAVA program to output the 
word “HELLO WORLD” on the screen 
and halt. 

 
Space and time are not an issue.  
The program is for an ideal computer.  
 
PASS for any working HELLO program, 
no partial credit. 



Teacher’s Grading Program 

The grading program G must be able to 
take any Java program P and grade it. 

 

           Pass, if P prints  “HELLO WORLD”          
G(P)=    

           Fail, otherwise. 

How exactly might such a script work? 



What kind of program 
could a student who hated 
his/her teacher hand in? 



Nasty Program 

n:=2; 
While  (the number 2n can be written as the sum 
of two primes)  
 n++; 
Print “HELLO WORLD”; 
 
 
The nasty program is a PASS if and only if the 
Goldbach conjecture is false. 



Despite the simplicity of 
the HELLO WORLD 

assignment, there is no 
program to correctly 

grade it!  
This can be proved. 



The theory of what can 
and can’t be computed by 
an ideal computer is called  

Computability Theory  
or Recursion Theory.  



The Ideal Memory Model 

 = finite alphabet of symbols  
Each memory location holds one element of  
 
“Abstract” Version: One memory location for 
each natural number 0, 1, 2, … 
 
“Practical” Version: Any time you start to run 
out of memory, the computer contacts the 
factory. A maintenance person is flown by 
helicopter and attaches 100 Terabytes of 
RAM to the computer. 

 



Computable Functions 

Fix any precise programming language, i.e., Java.  

A program is any finite string of symbols from  
that a Java interpreter will run (won’t give a 
syntax error) 
 

Recall * is the set of all strings of symbols. 
 

A function f : * -> * is computable if there is a 
program P that computes  f, when P is executed 
on a computer with ideal memory.  

That is, for all strings x in *, P(x) = f(x).  



The set of all programs is a 
countable set! 

Fix any precise programming language, i.e., Java.  

A program is any finite string of symbols from  
that a Java interpreter will run (won’t give a 
syntax error) 
 

Recall * is the set of all strings of symbols. 
 

A function f : * -> * is computable if there is a 
program P that computes  f, when P is executed 
on a computer with ideal memory.  

That is, for all strings x in *, P(x) = f(x).  



The set of all computable functions 
is also a countable set! 

Fix any precise programming language, i.e., Java.  

A program is any finite string of symbols from  
that a Java interpreter will run (won’t give a 
syntax error) 
 

Recall * is the set of all strings of symbols. 
 

A function f : * -> * is computable if there is a 
program P that computes  f, when P is executed 
on a computer with ideal memory.  

That is, for all strings x in *, P(x) = f(x).  



There are “countably 
many” Java programs. 
Hence, there are only 

“countably many” 
computable functions. 



Are there countably 
many functions from 

 * to * ? 



Power Sets 

Let S be a set. 

The power set of S is the set of all 
subsets of S.  

 

We write the power set as Power(S). 

 

Proposition: If S is finite, then 
Power(S) has cardinality 2|S| 



Theorem: For every S, there is no 
bijection between S and Power(S) 

Suppose f : S->P(S) is a bijection. 

A 

B 

C 

S 

{B} 

 

{A} 

{C} 

Power(S) 

{A,B} 

{B,C} 
{A,C} 

{A,B,C} 



Theorem: For every S, there is no 
bijection between S and Power(S) 

Suppose f:S->P(S) is 1-1 and ONTO. 

Let WEIRD = { x | x ∈ S, x  f(x) } 

There’s some y in S such that f(y)=WEIRD 

A 

B 

C 

S 

{
B
} 

 

{A
} 

{
C
} 

Power(S) 

{A,B} 

{B,
C} 

{A,C
} 

{A,B,
C} 

Is y in WEIRD? YES or NO? 
if y in WEIRD, then y ∈ S, and y  f(y) = WEIRD   
So y is not in WEIRD... but then 
 y ∈ S and y  WEIRD = f(y)... So y is in WEIRD… 

Contradiction 



Theorem: There are uncountably 
many functions! 

There is a bijection between  
 - The set of all subsets of *  

 (the powerset of * ) 
- The set of all functions f: * -> {0,1} 
 
Take a subset S of *, we map it to the 
function f where: 
f(x)  = 1   x in S 
f(x)  = 0   x not in S    



Uncountably many functions. 

There is a bijection between  
 - The set of all subsets of *  

 (the powerset of * ) 
- The set of all functions f: * - > {0,1} 
 
So the set of all f: * -> {0,1} has the 
same size as the powerset of * 
But * is countable, so the powerset of 
*  is uncountable!  
(No bijection between * and Power(*)!)  



So there are functions 
from * to {0,1} that are 

not computable.  
 

Can we describe an 
incomputable one?   
Can we describe an 

interesting, incomputable 
function? 



Notation And Conventions 

• Fix any programming language 

• When we refer to “program P” we mean 
the text of the source code for P 

• P(x) is the final output of program P on 
input x, assuming that P eventually 
halts 



P(P) 

It follows from our conventions that 
P(P) is the output obtained when we run 
P on the text of its own source code. 



P(P) … So that’s what I look like 



The Famous Halting Set: K 

K is the set of all programs P 
such that P(P) halts. 
 
K = { Program P | P(P) halts} 



The Halting Problem 

Is there a program HALT such that: 

 

HALT(P)  =     yes, if P(P) halts 

HALT(P)  =     no,   if P(P) does not halt 



The Halting Problem 
K = {P | P(P) halts } 

Is there a program HALT such that: 

 

HALT(P)  =     yes, if PK 

HALT(P)  =     no,   if PK 

 

HALTS decides whether or not any 
given program is in K.  



THEOREM: There is no program 
that can solve the halting problem! 

(Alan Turing 1937) 

Suppose a program HALT, solving the 
halting problem, existed: 
 
HALT(P)  =     yes, if P(P) halts 
HALT(P)  =     no,   if P(P) does not halt 
 
 We will call HALT as a subroutine in a 
new program called WEIRD. 
 
 
  



The Program WEIRD(P): 
If HALT(P) then go into an infinite loop. 
Else stop. 
<Put text of subroutine HALT here> 
 
Does WEIRD(WEIRD) halt or not? 
 
 YES implies HALT(WEIRD) = yes 
 but then, WEIRD(WEIRD) will infinite loop 
 
 NO implies HALT(WEIRD) = no 
 but then, WEIRD(WEIRD) halts 



The Program WEIRD(P): 
If HALT(P) then go into an infinite loop. 
Else stop. 
<Put text of subroutine HALT here> 
 
Does WEIRD(WEIRD) halt or not? 
 
 YES implies HALT(WEIRD) = yes 
 but then, WEIRD(WEIRD) will infinite loop 
 
 NO implies HALT(WEIRD) = no 
 but then, WEIRD(WEIRD) halts 

CONTRADICTION 



Turing’s argument is  
just like the  

DIAGONALIZATION 
argument from the theory 

of infinities. 



P0 P1 P2 … Pj … 

P0 

P1 

… 

Pi 

 

… 

YES, if  Pi(Pj) halts 

NO,      otherwise 



YES, if  Pi(Pj) halts 

NO,      otherwise 

di = HALT(Pi) 

P0 P1 P2 … Pj … 

P0 d0 

P1 d1 

… … 

Pi di 

 

… … 



P0 P1 P2 … Pj … 

P0 d0 

P1 d1 

… … 

Pi di 

 

… … 

WEIRD(Pi) halts iff di = NO 
The WEIRD row contains the 
opposite of the diagonal…  

W E I R D 
di = HALT(Pi) 



Alan Turing (1912-1954) 



Is there a real 
number that can be 
described, but not 

computed? 



Consider the real 
number between 0 
and 1, which has a 1 

in the ith decimal 
place if Pi is in K, 
and 0 otherwise 



Computability Theory: 
Vocabulary Lesson 

We call a set S  * decidable  
if there is a program P such that: 

 P(x) = yes, if x  S 

 P(x) = no,  if x  S 

 

We already know: K is undecidable 



Now that we have 

established that the 

Halting Set K is 

undecidable, we can use 

it as a starting point for 

more “natural” 

undecidability results. 



Oracle 

for S 

Oracle For Set S 

Is xS? 

YES/NO 



Example Oracle 
 S = Odd Naturals 

Oracle 

for S 

4

? 
No 

81? 

Yes 



L = the set of  programs that take no input and halt 

GIVEN:

Oracle 

for L 

Hey, I ordered an 
oracle for the 

famous halting set 
K, but when I 
opened the 

package it was an 
oracle for the 

different set L. 



GIVEN:

Oracle 

for  L 

P ; Q  ≡ simulates P using P as input 

Does P(P) halt? 

BUILD:

Oracle 

for K 

Does the program 

Q  

halt? 

L = the set of  programs that take no input and halt 



Thus, if  L were decidable 

then K would be as well. 

(If  there were a program 

for L, there’d be one for K, 

too!) 

 We already know K is not 

decidable. Therefore L is 

also not decidable! 



HELLO = the set of  programs that print HELLO and halt 

GIVEN:

HELLO 

Oracle  

 

Does P halt? 

BUILD:

Oracle 

for L 

Let P’ be P with all print 

statements removed.  

 

Does 

[P’; Print HELLO] 

ever print HELLO? 

 



If  there were a program 

for HELLO, then there’d 

be a program for L. 

But L is not decidable. 

So HELLO is not 

decidable. 



EQUAL = All <P,Q> such that P and Q have 

identical outputs on all inputs 

GIVEN: 

EQUAL

Oracle  

 
Does P equal 

HELLO ? 

BUILD: 

HELLO

Oracle 

Let H = [Print HELLO] 

 

 

 

 
Are P and H equal? 

 



Halting with input,  

Halting without input, 

The “Hello World” 

assignment, and 

EQUAL are not 

decidable. 



What about problems 

that have no obvious 

relation to halting, or 

even to computation can 

encode the Halting 

Problem is non-obvious 

ways? 



Diophantine equations 

𝑎𝑘 + 𝑏𝑘 = 𝑐𝑘 
𝑥𝑦2 − 𝑥𝑧 = 𝑝 

Hilberts 10th problem was to find a 
solution to such equations. 

 



Puzzle Pieces 

Given a finite set of puzzle pieces, can 
you tile the plane (you are allowed to 
use each piece arbitrarily often)? 

 

 



PHILOSOPHICAL 

INTERLUDE 



CHURCH-TURING THESIS 

Any well-defined procedure 
that can be grasped and 
performed by the human mind 
and pencil/paper, can be 
computed on a conventional 
digital computer with no bound 
on its memory. 



The Church-Turing Thesis is NOT a 
theorem. It is a statement of belief 

about the universe we live in. 

Your opinion will be influenced by your 
religious, scientific, and philosophical 
beliefs. 



Empirical Intuition 

No one has ever given a counter-
example to the Church-Turing  thesis. 
That is, no one has given a concrete 
example of something that humans can 
compute in a consistent and well 
defined way, that also can’t be 
programmed on a computer.  

The thesis is true. 



Mechanical Intuition 

The brain is a machine. The components 
of the machine obey physical laws.  

In principle, an entire brain can be 
simulated step by step on a digital 
computer. Thus, any thoughts of such a 
brain can be computed by a simulating 
computer. The thesis is true. 



Spiritual Intuition 

The mind consists of part matter and 
also part soul. Soul, by its very nature, 
cannot be reduced to physical laws. 
Thus, the action and thoughts of the 
brain cannot be simulated or reduced to 
simple components and rules. The 
thesis is false. 



Do these theorems about 

the limits of  computation 

tell us something about 

the limitations of  human 

thought? 



Self-Reference Puzzle 

Write a program that prints its own 
code out as output.  

 

No calls to the operating system, or to 
memory external to the program. 

 

(You don’t need to use a specific 
programming language,  just your own 
“English pseudocode” will do.) 


