
Digital Envelopes, 
Zero Knowledge, 
and other wonders of 
modern cryptography 

(How computational complexity 
enables digital security & privacy) 
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Cryptography:    1. secret writing 
 
2 : the enciphering and deciphering of messages in 

secret code or cipher   

 
– Ancient ideas: (pre-1976) 

– Complexity-based cryptography (post-
1976) 

  Modern crypto is about much more than just 
 encryption or secret writing. 
 



Cryptography pre-1976 
(before computational complexity) 

Secret communication 

 Assuming shared information 
 which no one else has 
 



Tasks Traditional method 

Encryption 

Identification Driver License 

Money transfer Notes, checks 

Public bids Sealed envelopes 

Code books 

Elections Secret ballots 

Need to be done online!  

Qs. Why do you think this a problem??? 



Example: Public closed-ballot elections 

• Hold an election in this room 
– Everyone can speak publicly 

(i.e. no computers, email, etc.) 

– At the end everyone must 
agree on who won and by what 
margin 

– No one should know which way 
anyone else voted 

• Is this possible? 
– Yes!  (A. Yao, Princeton) 



 

 
What are we assuming 

here?? 



Axiom 1: Agents are computationally  
           limited. 
 
Consequence 1: Only tasks having efficient 
                algorithms can be performed  



Recall: Creating Problems can 
be easier than solving them 

 
Multiplication 
mult(23,67) = 1541 
 
grade school algorithm: 
n2 steps on n digit inputs 
 
EASY 
Can be performed quickly  
for huge integers 

Factoring 
factor(1541) = (23,67) 
 
best known algorithm: 
exp(n) steps on n digits 
 
HARD? 
We don’t know! 
We’ll assume it. 

Axiom 2: Factoring is hard! 



   Impossible 

p,q pq 

 Easy 

Axiom 1: Agents are computationally limited 

Axiom 2: Factoring is hard              

 Easy 

   Impossible 

“One way 
function” 



Fact: Axioms --> “Digital Envelope” 

E(x)   x 

•Easy to insert x  (any value, even 1 bit) 
•Hard to compute content (even partial info)  
•Impossible to change content (E(x) defines x) 
•Easy to verify that x is the content 

  Cryptography Theorem: 

OPEN CLOSED 



El Gamal 

• P = 2Q+1 

– E.g. P = 227, Q = 113 

 

• Assumption: Given x computing log4x mod Q is hard. 

– Given 4y computing y is hard. 

• Alice 

– Pick a, compute 4a, send 4a  to Bob 

• Bob 

– Pick b, compute 4b, sent 4b  to Alice 

– Compute 4ab 

• Alice 

– Compute 4ab 

• Why is this secure? 

 



El Gamal 

• Assumption: Given x computing log4x mod Q is hard. 

– Given 4y computing y is hard. 

• Alice 

– Has message x 

– Send  y = 4x  to Bob 

• Alice 
– Send x 

• Bob 
– Check that 4x = y 

• Why is this secure? 



The power of the  

digital envelope 

 
Examples of increasing difficulty 

 
Mind games of the 1980’s – before 
Internet & E-commerce were imagined 



Example: Public bid (players in one room) 

Phase 1:  
Commit 

Phase 2:  
Expose 

E (130) E (120) E (150) 

130 120 150 

Theorem:    Simultaneity 

$150 $120 $130 



 Public Lottery (on the phone)  

Alice Bob 

Bob: flipping...  You lost! 

Theorem:    Symmetry breaking 

Alice: if  I get the car (else you do) 

What did you pick? Bob: flipping... 

Blum   
1981 



Identification / Passwords 

Public password file 
 
Name  E (pswd) 
…  … 
alice  Palice =E (…) 
…  … 
grant  Pgrant=E (haha) 
…  … 
bob  Pbob =E (…) 
…  … 
 

Computer:  1 checks if  E (pswd)= Pgrant 

        2 erases password from screen 

  login:    grant 

  password:  haha 



Theorem:     Identification 

Problem: Eavesdropping & repeated use! 
 
Wishful thinking: 
Computer should check if I know x such  
that  E (x)=Pgrant without actually getting x 

Zero-Knowledge Proof: 
• Convincing 
• Reveals no information 



Copyrights 

Dr. Alice: I can prove Riemann’s Hypothesis 

Dr. Alice: Lemma…Proof…Lemma…Proof... 

Prof. Bob: Impossible! What is the proof? 

Prof. Bob: Amazing!! I’ll recommend tenure 
             Amazing!! I’ll publish first 



    Zero-Knowledge Proof 

“Claim” 

Bob Alice (“proof”) 

Accept/Reject 

“Claim” false  Bob rejects 

“Claim” true     Bob accepts 
Bob learns nothing  

 with high probability 

Goldwasser-Micali 
-Rackoff   1984 



The universality of  
Zero-Knowledge 

Theorem: Everything you can prove at all, 
            you can prove in Zero-Knowledge 

Goldreich-Micali 
-Wigderson 1986 



ZK-proofs of Map Coloring 

Input: planar map M 

4-COL: is M 4-colorable? 

3-COL: is M 3-colorable? 

YES! 

HARD! 

Consider “claim”: map M is 3-colorable 

Theorem [GMW]: Such claims have ZK-proofs 



Q P 

F 
M O 

N 

L 

K J 
I 

H 

G 
E 

C B 

D 

A 

I’ll prove this claim in zero-knowledge 
Claim: This map is 3-colorable (with R Y G ) 
 
Note: if I have any 
3-coloring of any map 
 
 
 
 
Then I immediately have 6 
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M O 

N 
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Structure of proof: 
Repeat (until satisfied) 
   
- I hide a random one 
  of my 6 colorings 
  in digital envelopes 
 
- You pick a pair of 
  adjacent countries 
   
- I open this pair of envelopes 
 
Reject if RR,YY,GG or illegal color 



Why is it a Zero-Knowledge Proof? 

•  Exposed information is useless                       
(Bob learns nothing)                    

• M 3-colorable  Probability [Accept] =1  
(Alice always convinces Bob) 

• M not 3-colorable Prob [Accept] < .99  

  Prob [Accept in 300 trials] < 1/billion  

  (Alice rarely convince Bob) 



What does it have to do 
with Riemann’s Hypothesis? 

Theorem: There is an efficient algorithm A: 

A 
“Claim” + 
“Proof length” Map M 

“Claim” true M 3-colorable 

“Proof”  3-coloring of M 

“Translator” A comes from the proof that 
  3-coloring is NP-complete [Cook71, Levin73] 



Theorem [GMW]:        + short proof  
  efficient ZK proof 

 
Theorem [GMW]:            fault-tolerant 

                  protocols 



Making any protocol 
fault-tolerant 

1.P2 send m1(s2) 

2.P7 send m2(s7,m1) 

3.P1 send m3(s1,m1 ,m2) P1 

si secret 

s1 

P2 

P7 

P3 

s2 s3 

s7 

Suppose that in step 1 P2 sends X 
How do we know that X=m1(s2)? 
s2 is a short proof of correctness! 
P2 proves correctness in zero-knowledge!! 



Recall: Public closed-ballot elections 

• Hold an election in this room 
– Everyone can speak publicly 

(i.e. no computers, email, etc.) 

– At the end everyone must 
agree on who won and by what 
margin 

– No one should know which way 
anyone else voted 

• Is this possible? 
– Yes!  (A. Yao, Princeton) 

Requires more ideas than just digital envelope 



Some things we didn’t have 

time for today 

• RSA public-key cryptosystem and 
  digital signature method  
• Yao’s computation-scrambling idea 
• Various subtle security attacks (chosen 
ciphertext, chosen plaintext, etc. etc.)  
and how to guard against them 
• Easier and speedier implementations of 
the zero knowledge idea using modular 
arithmetic….   



Example: Private 
communication 

Alice and Bob want to  
have a completely private 
conversation.  
 
They share no private 
information    
 
Solved using RSA cryptosystem (in conjunction 
with signature authorities like Verisign) 



Summary 
Practically every cryptographic task can be 

performed securely & privately 
Assuming that players are computationally 

bounded and Factoring is hard. 
 
- Computational complexity is essential! 
- Hard problems can be useful! 
- The theory predated (& enabled) the Internet 
 
- What if factoring is easy (note: believed not 

to be NP-complete)? 
- We have (very) few alternatives. 
Major open question: Can cryptography  
be based on NP-complete problems ? 


